OPENCOURSEWARE

SGG 4653
Advance Database System

Object-Relational DBMS

Inspiring Creative and Innovative Minds

ocw.utm.my

Outline

§ Advantages and disadvantages of ORDBMS
8 ORDBMS Features
§ SQL3 — New OO Data Management Features

||||||||

ocw.utm.my @HTM

Advantages of ORDBMS

Resolves many of known weaknesses of RDBMS.

Reuse and sharing:

— reuse comes from ability to extend server to perform standard
functionality centrally

— gives rise to increased productivity both for developer and end-
user.

Preserves significant body of knowledge and experience gone
Into developing relational applications.

ocw.utm.my

Disadvantages of ORDBMS

Complexity.
Increased costs.

Proponents of relational approach believe simplicity and
purity of relational model are lost.

Some believe RDBMS is being extended for what will be a
minority of applications.

SQL now extremely complex.

||||||||

ocw.utm.my

Data Modeling Comparison of OR & OO DBMS

Feature

Object identity (OID)
Encapsulation

Inheritance
Polymorphism

Complex objects
Relationships

ORDBMS

Supported through REF type
Supported through UDTs

Supported (separate hierarchies
for UDTs and tables)

Supported (UDF invocation
based on the generic function

Supported through UDTs

Strong support with user-defined
referential integrity constraints

OODBMS

Supported
Supported but broken for querics
Supported

Supported as in an object-
oriented programming model language

Supported

Supported (for example, using
class libraries)

ocw.utm.my

Data Access Comparison of OR & OO DBMS

Feature

Creating and accessing
persistent data

Ad hoc query facility
Navigation

Integrity constraints
Object server/page server
Schema evolution

ORDBMS

Supported but not
transparent

Strong support
Supported by REF type
Strong support

Object server

Limited support

OODBMS

Supported but degree of
transparency differs between products

Supported through ODMG 3.0
Strong support

No support

Either

Supported but degree of support
differs between products

ocw.utm.my

Data Sharing Comparison of OR & OO DBMS

Feature ORDBMS
ACID transactions Strong support
Recovery Strong support
Advanced transaction models No support
Security, integrity, and views Strong support

A- Atomicity

C — Consistent

[— Isolation

D - Durability

OODBMS

Supported

Supported but degree of support differs
between products

Supported but degree of support differs
between products

Limited support

ocw.utm.my

ORDBMS Features

OO features being added include:
User-extensible types
Encapsulation
Inheritance
Polymorphism
Dynamic binding of methods
Complex objects including non-1NF objects
Object identity

||||||||

ocw.utm.my @HTM

||||||||

SQL3 — New OO Data Management Features

Type constructors for row types and reference types.

User-defined types (distinct types and structured types) that
can participate in supertype / subtype relationships.

User-defined procedures, functions, and operators.

Type constructors for collection types (arrays, sets, lists, and
multisets).

Support for large objects—Binary Large Object (BLOBs) and
Character Large Object (CLOBs).

Recursion.

ocw.utm.my @m

SQL3 — New OO Data Management Features

Row Types

Sequence of field name/data type pairs that provides data
type to represent types of rows in tables.

Allows complete rows to be:
— stored in variables,
— passed as arguments to routines,
— returned as return values from function calls.

Also allows column of table to contain row values.

||||||||

ocw.utm.my @HIM

SQL3 — New OO Data Management Features

Example 1 — Use of Row Types

CREATE TABLE Branch (branchNo CHAR(4),
address ROW(street VARCHAR(25),
city VARCHAR(15),
postcode ROW(cityIldentifier VARCHAR(4),
subPart VARCHAR(4))));

INSERT INTO Branch
VALUES ('B0O05’, ('22 Deer Rd’, ‘London’,
ROW(CSW1’, '4EH")));

ocw.utm.my @HTM

||||||||

SQL3 — New OO Data Management Features

Named Row Type
A named row type Is a row type with a name assigned to it.

A named row type is effectively a user defined data type with
a non-encapsulated internal structure (consisting of its fields).

ocw.utm.my @

SQL3 — New OO Data Management Features

Example 2 — Use of Named Row Type

CREATE ROW TYPE account_t
(acctno INT,
cust REF(customer_t),
type CHAR(1),
opened DATE,
rate DOUBLE PRECISION,
balance DOUBLE PRECISION,

P

CREATE TABLE account OF account_t
(PRIMARY KEY acctno

);

ocw.utm.my @HTM

||||||||

SQL3 — New OO Data Management Features

User-Defined Types (UDTs)

Subdivided into two categories: distinct types and structured
types.

Distinct type allows differentiation between same underlying
base types:

CREATE TYPE OwnerNoType AS VARCHAR(5) FINAL;

CREATE TYPE StaffNoType AS VARCHAR(5) FINAL;

FINAL — indicates that we cannot create subtypes of this
user-defined type

ocw.utm.my @HTM

||||||||

SQL3 — New OO Data Management Features

User-Defined Types (UDTs)

Value of an attribute can be accessed using common dot
notation:

(assuming p is an instance of the UDT PersonType which has
an attribute fName of type VARCHAR. We can access fname
attribute as:

p.fName p.fName = ‘A. Smith’

ocw.utm.my @HTM

||||||||

SQL3 — New OO Data Management Features

User-Defined Types (UDTs)

For each attribute, an observer (get) and a mutator (set)
function are automatically defined, but can be redefined by
user in UDT definition.

the observer (get) function for the fName attribute of
PersonType:

FUNCTION fName (p PersonType) RETURNS VARCHAR(15)
RETURN p.fName;

ocw.utm.my @HTM

||||||||

SQL3 — New OO Data Management Features

User-Defined Types (UDTs)
The mutator (set) function to set the value to newValue is:

FUNCTION fName (p PersonType RESULT, newValue VARCHAR(15))
RETURNS PersonType
BEGIN
p.fName = newValue;
RETURN p;
END;

ocw.utm.my

SQL3 — New OO Data Management Features

CREATE TYPE employee_t

(PUBLIC
name CHAR(20),
b _address address t,
manager employee_t,
hiredate DATE,

PRIVATE

base_salary DECIMAL(7,2),
commission DECIMAL(7,2),

PUBLIC

FUNCTION working_years (p
employee_t) RETURNS

INTEGER

<code to calculate number of
working years>,

PUBLIC

FUNCTION working_years (p
employee_t, y years) RETURNS
employee_t
<code to update number of working
years>,

PUBLIC

FUNCTION salary (p employee_t)
RETURNS DECIMAL

<code to calculate salary>

);

ocw.utm.my

SQL3 — Definition of new UDT

CREATE TYPE PersonType AS (
dateOfBirth DATE CHECK (dateOfBirth >
DATE '1900-01-01"),

fName VARCHAR(15) NOT NULL,
IName VARCHAR(15) NOT NULL,

sex CHAR,
FUNCTION age (p PersonType) RETURNS INTEGER
RETURN code to get age from dateOfBirth REF IS SYSTEM
END, GENERATED - indicates
FUNCTION age (p PersonType RESULT, e
DOB: DATE) RETURNS PersonType are provided by the system
RETURN set dateOfBirth NETANTIABLE - catas
END) — that instances can be created
REF IS SYSTEM GENERATED for this type
INSTANTIABLE <4

NOT FINAL;

ocw.utm.my @ UTM

SQL3 — Definition of new UDT

CREATE TYPE StaffType UNDER PersonType AS (

staffNo VARCHAR(5) NOT NULL UNIQUE,
position VARCHAR(10) DEFAULT ‘' Assistant’,
salary DECIMAL(7, 2),

branchNo CHAR(4),
CREATE FUNCTION isManager (s StaffType) RETURNS BOOLEAN
BEGIN
IF s.position = ‘Manager’ THEN
RETURN TRUE;
ELSE

RETURN FALSE; —
INSTANTIABLE — indicates that

END IF instances can be created for
END) this type.
INSTANTIABLE

NOT FINAL — indicates that we can
NOT FINAL; e 0t subtypes of this user-defined

type

ocw.utm.my @HIM

SQL3 — Table Creation using UDT

CREATE TABLE Staff (
info StaffType,

PRIMARY KEY staffNo));
()) Indicates that the actual

values of associated REF
or / are provided by the system

CREATE TABLE Staff OF StaffType (/
REF IS staffID SYSTEM GENERATED,
PRIMARY KEY (staffNo));

ocw.utm.my @ UTM

SQL3 - Using Reference Type to Define a Relationship

CREATE TABLE PropertyForRent (
propertyNo PropertyNumber NOT NULL,
street Street NOT NULL,
City City NOT NULL,
postcode PostCode,
type PropertyType NOT NULL DEFAULT <F>, SCOPE specifies the

associated

rooms PropertyRooms NOT NULL DEFAULT 4 referenced table
rent PropertyRent NOT NULL DE 600,
staffID REF(StaffType) SCOPE Staff

REFERENCES_ ARE CHECKED ON DELETE
CASCADE,

PRIMARY KEY (propertyNo));

REFERENCES ARE CHECKED indicates the

referential integrity is to be maintained

e This example used a reference type, REF(StaffType) to model
the relationship between PropertyForRent and Staff

ocw.utm.my @HTM

||||||||

SQL3 - Creation of Subtable (Inheritance)

Person

AN

employee customer

CREATE TABLE person (name CHAR(20), sex CHAR (1), age
INTEGER);

CREATE TABLE employee UNDER person (salary FLOAT);

CREATE TABLE customer UNDER person (account INTEGER);

ocw.utm.my @HIM

SQL3 - Creation of Subtable (Inheritance)

CREATE TABLE Manager UNDER Staff (
bonus DECIMAL(S, 2),
mgrStartDate DATE);

§ Each row of supertable Staff can correspond to at most one
row in Manager.

§ Each row in Manager must have exactly one corresponding
row in Staff.

ocw.utm.my

SQL3 — Use of UDFs

Example: List flats that are for rent at branch BOO03.

We might decide to use a function:

CREATE FUNCTION flatTypes()
RETURNS SET(PropertyForRent)
SELECT * FROM PropertyForRent

WHERE type = ‘Flat’;

And the query become:

SELECT propertyNo, street, city, postcode
FROM TABLE (flatTypes())
WHERE branchNo = '‘B003";

||||||||

ocw.utm.my

SQL3 — Use of UDFs

8 Query Processer should ‘flatten’ that query using the
following step:

(1)

(2)

SELECT propertyNo, street, city, postcode

FROM TABLE (SELECT * FROM PropertyForRent
WHERE type = ‘Flat’)

WHERE branchNo = ‘B003";

SELECT propertyNo, street, city, postcode
FROM PropertyForRent

WHERE type = 'Flat” AND branchNo = "B003;

ocw.utm.my

SQL3 - Collection Types

ARRAY: 1D array with maximum number of elements.
LIST: ordered collection that allows duplicates.

SET: unordered collection that does not allow duplicates.

MULTISET: unordered collection that allows duplicates.

||||||||

ocw.utm.my @HIM

SQL3 — Use of collection SET

§ Extend Staff table to contain details of a number of next of
kin, and then: Find first and last names of John White’s next-
of-kin.

8 We could implement the column as an ARRAY data type:

CREATE TABLE Staff OF StaffType (
nextOfKin SET(PersonType)

REF IS staffID SYSTEM GENERATED,
PRIMARY KEY (staffNo));

SELECT n.fName, n.IName
FROM Staff s, TABLE (s.nextOfKin) n
Query becomes: WHERE s.IName="White’ and s.fName = "John’;

ocw.utm.my

SQL3 - Collection Types

§ Example: Defines Collection types for sets, and lists.

CREATE TABLE employees
(id INTEGER PRIMARY KEY,
name VARCHAR(30),
address ROW(street CHAR(40),
city CHAR(20),
state CHAR(2),
zip INTEGER),
projects SET (INTEGER),
children LIST (person),
hobbies SET (VARCHAR (20))

);

ocw.utm.my

SQL3 — Retrieve Specific Column/Rows

SELECT s.IName
FROM Staff s
WHERE s.position = ‘Manager’;

Find the names of all Managers.
Uses implicitly-defined observer (get) function position.

||||||||

ocw.utm.my @HIM

SQL3 — Retrieve specific components of a row type

Row types define types for tuples, | CREATE TABLE Person OF TYPE
and they can be nested. PersonType;

CREATE ROW TYPE AddressType{ | Recall: row types can be nested!
street CHAR(50),
City CHAR(25), Accessing components of a row

\ zipcode CHAR(10) type: (double dots)

SELECT Person.name,
CREATE ROW TYPE PersonType{ Person.address..city

name CHAR(30),
address AddressType, FROM Person

phone phoneNumberType
) WHERE Person.address..street
LIKE ‘%Mountain%’

ocw.utm.my @HTM

||||||||

SQL3 — Use of ONLY

Person
employee customer
SELECT p.IName, p.fName SELECT p.IName, p.fName
FROM Person p FROM ONLY (Person) p
WHERE p.age > 65; WHERE p.age > 65;

This will list out not only records explicitly inserted into Person
table, but also records inserted directly/indirect into subtables of
Person.

Can restrict access to specific instances of Person table, excluding
any subtables, using ONLY.

ocw.utm.my

SQL3 - Large Objects

A table field that holds large amount of data.
Three different types:

— Binary Large Object (BLOB)

— Character LOB (CLOB)

— National CLOB

In SQL3, LOB allows some operations to be carried out in
DBMS server.

||||||||

ocw.utm.my @HTM

||||||||

SQL3 — Use of CLOB and BLOB

Extend Staff table to hold a resume and picture for the staff

member.
ALTER TABLE Staff CREATE TABLE employees
ADD COLUMN resume CLOB(50K); (id INTEGER,
name VARCHAR(30),
ALTER TABLE Staff

salary us_dollar,
ADD COLUMN picture BLOB(12M);
resume CLOB(75K),
signature BLOB(1M),
picture BLOB(12M)

);

ocw.utm.my

SQL3 — Recursion

§ Linear recursion is major new operation in SQL3.

WITH RECURSIVE
AllManagers (staffNo, managerStaffNo) AS

(SELECT staffNo, managerStaffNo Staff

FROM Staff

UNION staffNo managerstaffNo

SELECT in.staffNo, out.managerStaffNo

FROM AllManagers in, Staff out Sggi Sggg

WHERE in.managerStaffNo = out.staffNo) S003 S002
SELECT * FROM AllIManagers S002 S001
ORDER BY staffNo, managerStaffNo; S001 NULL

