Basic Genetics (SQBS 2753)

Introduction to Genetics

Azman Abd Samad

Genetics

- Classical Genetics
 - Mendelian genetics
 - Fundamental principles underlying transmission of genetic traits
 - Forward genetics
 - Identify or generate phenotypically mutant organisms
 - Determine mode of inheritance and interactions with other mutants
 - Identify mutated gene(s)
 - Correlate observed phenotype with biochemical mechanisms

Genetics

- Molecular Genetics
 - Based on classical approaches
 - Refers to techniques applied to study genetic questions
 - Most modern genetic studies are molecular
 - Reverse genetics
 - Genes identified 1st
 - Gene mutated by molecular biology techniques
 - Mutant gene inserted into genome of organism and resulting phenotype studied

History of Genetics

- Domestication of plants & animals suggests prehistoric peoples recognized concept of heredity
- Traits passed from parent to offspring
- Selection of desirable traits artificial selection

History of genetics

- Ancient Greeks
 - Mostly bunk
- Renaissance 1600-1800
 - Theories of epigenesis vs preformation
- 1800s turn to a more reductionist approach
 - Dalton's Atomic theory
 - Schwann's cell theory

History of Genetics

- Mid 19th century (1850)
 - Darwin & Wallace
 - Theories of evolution
 - Lamarck
 - Theories on acquisition of heritable traits
 - Mendel
 - Theories on transmission of traits

Gregor Mendel (1822-1884)

- Systematically recorded results of crosses
- Theorized on nature of hereditary material
- Postulate mechanism of transfer of "Elementen" governing traits

History of Genetics

- Pioneering work of Mendel was done in ignorance of cell division – particularly meiosis, and the nature of genetic material – DNA
- 1869 Friedrich Miescher identified DNA
- 1900-1913
 - Chromosomal theory of inheritance Sutton & Boveri
 - Genes on chromosomes TH Morgan
 - Genes linearly arranged on chromosomes & mapped AH Sturtevant
- 1941 George Beadle & Ed Tatum related "gene" to enzyme and biochemical processes
- 1944 Oswald Avery demonstrated that DNA was genetic material

DNA

- 1953 James Watson, Francis Crick, Rosalind Franklin & Maurice Wilkins
- Lead to understanding of mutation and relationship between DNA and proteins at a molecular level
- 1959 "Central Dogma"
 - DNA→RNA→protein

- Chromosome
 - double stranded DNA
 molecule packaged by
 histone & scaffold proteins

- Chromosome numbers
 - Constant for an organism
 - n haploid number
 - 2n diploid number
- Karyotype

Male karyotype

- Chromosome numbers
 - Each individual inherits n # of chromosomes from dad & n # from mom
 - Humans 46 chromosomes = 2n
 - Humans 23 paternal, 23 maternal
 - Humans n = ____
 - Each maternal & paternal pair represent homologous chromosomes - called homologs

OPENCOURSEWARE

Genetic Concepts

(a) Chromosomal composition found in most female human cells (46 chromosomes)

Diploid

(b) Chromosomal composition found in a human gamete (23 chromosomes)

Haploid

- Homologous Chromosomes
 - Share centromere position
 - Share overall size
 - Contain identical gene sets at matching positions (loci)

- Gene sequence of DNA which is transcribed into RNA
 - rRNA, tRNA or mRNA
- Locus the position on a chromosome of a particular DNA sequence (gene)

Homologous chromosomes in pairs G Locus – gene for color G g g g W W W W W W W Locus – gene for shape

Genes are parts of chromosomes

- DNA is mutable
- A variation in DNA sequence at a locus is called an allele
 - Diploid organisms contain 2 alleles of each locus (gene)
 - Alleles can be identical homozygous
 - Alleles can be different heterozygous
 - If only one allele is present hemizygous
 - Case in males for genes on X and Y chromosomes

Allele – G vs g; W vs w

At the G locus either the G or g allele may be present on a given homologue of a homologous pair of chromosomes

- Genome
 - Collection of all genetic material of organism
- Genotype
 - Set of alleles present in the genome of an organism
- Phenotype
 - Result of Gene Expression
 - Genes (DNA) are transcribed into RNA
 - mRNA is translated into protein, tRNA & rRNA work in translation process
 - Biochemical properties of proteins, tRNAs & rRNAs determine physical characteristics of organism

Gene Expression

Mutation & Phenotypic Variation

Highly functional pigmentation enzyme (a) Molecular level

Poorly functional pigmentation enzyme

Mutation & Phenotypic Variation

OPENCOURSEWARE

Mutation & Phenotypic Variation

Dark butterfly

(c) Organismal level

Light butterfly

Dark butterflies are usually in forested regions.

(d) Populational level

Light butterflies are usually in unforested regions.

References

- Snustad DP, Simmons, MJ (2010) Principles of Genetics Fifth Ed. John Wiley & Sons, Inc., USA.
- Klug WS, Cummings MR, Spencer CA, Palladino MA (2012) Concepts of Genetics. 10th Ed. Pearson, California.
- Hartwell LH, Hood L, Goldberg ML, Reynolds AE, Silver LM (2011) Genetics: From Genes to Genomes. 4th Ed. McGraw-Hill Companies, Inc., NY