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Digital Filter Design

Filtering is a process of changing signal’s spectral content. The
change is usually to in the signal
while allowing the other frequencies to pass through.

Below are how z-transform and DTFT are used to design the filter

lIR  To convert an analog filter to | * To analyze the
( the digital filter spectral
) | * To obtain difference equation response
FIR * To analyze the
( ) spectral

response
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Digital Filter Design (cont.)

Shown in the previous table are only for bilinear transformation and
windowing techniques. There are many other techniques in
designing both IIR and FIR filters. Different technique will use the z-
transform and DTFT (or DFT) differently.
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ldeal Filter

e Cut-off frequency (w,) is the only parameter considered.

Lowpass filter:

1 ——

(1 for w<=<w,
[H (@)]Lp = {0 for w,<w<mn

(0 for w<w,
[H (@)]np = {1 for w,<w<m

=1—|H(w)|.p
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ldeal Filter (cont.)

Bandpass filter:
0 for w < weq

|Hw)|gp =31 for wi, <w < wey
0 for wp<w<sm

S
S

S
I

|H((U)|Lp(a)c2) — |H(a))|LP(C‘)c1)

1 for w<wy
| i |Hw)|gp =10  for w,q <w < we
: 1  for wpor<w<mn

=1- |H(a))|LP(a)C2) + |H((‘))|Lp(wc1)
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Non-ideal Filter

e Filter characteristic below must be considered:

Aw

Cutoff frequency
Passband edge frequency
Stopband edge frequency
Passband ripple
Stopband ripple

Filter order

Transition bandwidth

©UIM



Non-ideal Filter (cont.)

Passband ripple

Stopband
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lIR Filter Design

There are two common technique used in designing the IIR filter
— Impulse Invariance

— Bilinear Transformation

Basically, both techniques are implemented by converting system
function of continuous-time filter (H(s)) to the discrete-time
system function (H(z)). In other words, they map all poles in s-
plane onto z-plane.
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Bilinear Transformation

In Bilinear transformation technique, relationship between the s-plane
. 2 . . .
and z-plane is shown below where ¢ = — and T is the time sampling.

B 1—z"1
>=¢ 14271

Then, the relationship between the continuous-time frequency ()
and the discrete-time frequency (w) is

Q) =c.tan (%) w = 2tan™?! <%>
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Filter Design Procedure

Determine filter characteristic
(8, 05, Wy, Ws, W, N):

When designing filter, not all
filter characteristics must be
determine. Below are 3 ways of
specifying the filter
characteristics.

. Specify &, 65, w, and wy
Il. Specify w., N

l1l. Specify w,, ws and & or w,,
wy, and &,

Find system function of the
continuous-time filter, H(s):

For Butterworth filter, need to
find . and N.

Transform the continuous-time
filter, H(s) to the discrete-
time filter, H(z)

Obtain the time-domain
representation of the discrete-
time filter for implementation:

Either as an impulse response
or as a difference equation.
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Butterworth filter

e |n this class, the filter design will be based only on Butterworth
filter, which is one of the well known continuous-time filter.
Another example of well known continuous-time filter is Chebyshev

filter.

 The magnitude squared spectrum of continuous Butterworth filter
is define as:

IHGD|* =
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Butterworth filter (cont.)

e From there, it follows that

H(s)H(=s) =

e Based on the previous equation, it shows that Butterworth filter is
an IR filter as it contains poles at s # 0. From the equation, it also
shows that Butterworth filter contains only poles and no zeros on

the s-plane.



ocw.utm.my @ETM

Butterworth filter (cont.)

The poles of the Butterworth filter can be determined as follow:

Sp = Qe GREN+DT/2N k=0,1,..,N—1

Total number of the poles will be similar to N (filter order) where all
poles are positions at 0 < 0 on the s-plane. This is to ensure the
causality and stability of the filter.

The following figures are examples of the poles position on the s-
plane with Q. = 1.



Butterworth filter (cont.)
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Butterworth filter (cont.)

e Then, the system function of ¢ To simplify the system function,
the Butterworth filter is always set (. = 1. Thus, the
system function becomes

. ‘Q'CN H(s) = .
B e st =)

sp = e/ @RFN+Dm/2N = =0,1,..,N—1
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Butterworth filter (cont.)

* Below is table showing the system function for several filter order

when Q. = 1.
, 1
s+ 1
: 1
s2 4+ 1.4142s + 1

1
3 G+DGE2+s+1)

1
4 (52 + 0.7654s + 1)(s% + 1.8478s + 1)
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Example 1

e Design a digital lowpass filter based on 2"? order Butterworth filter
where cutoff frequency of the filteris w, = 0.5 rad

Solution:
Step 1: Specify filter characteristics. Use given w, = 0.5mand N = 2.

Step 2: Find system function of the continuous filter by setting
Q. = 1, system function for 2" order Butterworth filter is

1

H(s) =
(&)= s+ 1
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Example 1 (cont.)

Step 3: Transform H(s) to H(z)

1—2z"1
S=¢C
1+2z71
Need to find ¢ value. It can be computed based on given w,
and ). = 1 using equation below

(. = c.tan (%)

1

1

€= tan(0.25m) N
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Example 1 (cont.)

Then, the discrete-time system function is
1
G ;;:)2 +1.4142 G ;;:1) +1
(1+z71H?
T -z )2 +14142(1-z DA +z D+ (1 + 2z 1)?
(1+z71H?
~ 34142 + 0.5858z" 1

H(z) =

142z 14272
1+ 0.1864z2

= 0.2929
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Example 1 (cont.)

Step 4: Obtain time-domain representation. Here we use difference
equation.

y[n] = 0.2929(x[n] + 2x[n — 1] + x[n — 2]) — 0.1864y|n — 2]

* In order to see the shape of the filter, obtain and plot |H (w)|. For
this example, the plot is shown below. Also shown is the magnitude
dB plot and poles and zero plot for the filter.



[H(w)l

- oowutmmy
Example 1 (cont.)

0.7079

|H(w)lap

®UIM
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Example 2

e Design an lIR lowpass filter based on Butterworth filter with the
following filter characteristics.

6 =6, =0.1

Wy = 0.2

ws = 0.41
Solution:

Step 1: Specify filter characteristics. As given in the question the filter
characteristics are shown in the following figure.
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Example 2 (cont.)

|H ()l

= PP ] e i v

T e
1

Passband ripple

Stopband

0.1

1 1
0 W, =02n W;=04n T

Step 2: Find system function of the continuous filter

To obtain the system function, set 0. = 1 and find N




Example 2 (cont.)

 From the filter characteristics, |H (jQ)|* at Q, and {5 can be
identified, which are 0.9% and 0.1 respectively. Based on this
information, N can be computed as follows where generally, the
magnitude squared spectrum of Butterworth filteris setas . =1

H(GQ)|? =
HGOP = 57

 |n orderto compute N, evaluate the magnitude squared spectrum
at (), and ()5. Based on bilinear transformation;

() = c.tan (%)
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Example 2 (cont.)

Evaluating magnitude squared spectrum at (), and ()5 gets to

1
= 0.92 1
1+ (0.3249¢)2N 1)
1 2
=0.1 (2)

1+ (0.7265c)2N

©UIM
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Example 2 (cont.)

By manipulating and rearranging the two equations, it can be
shown that

104 <|H<ns>|22. (1- |H(np)|2)>\
N:l |H(Qp)| -(1_|H(Qs)| )
2 Q)
\ 09 () /
= 3.7569
~ 4

Because N must be an integer number, value from the computation
is round toward infinity to ensure the filter characteristics specified
in step 1 is hold.



Step 3:
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Example 2 (cont.)

Finally, with Q. = 1 and N = 4, the system function of the
continuous-time filter is

1
+0.7654s+1)(s%2+1.8478s+1)

H(s) =

Transform H(s) to H(z)
- (1-z

R E

Need to find ¢ value. It can be computed based on equation
(1) with N = 4. The resultsis c = 2.5676




Example 2 (cont.)

Based on the c¢ value, the discrete-time system function is

1
_,—1\2 _,—1 _,—1\2 -1
(cz(l 2_1) +0.7654c(1 Z_l)+1><c2(1z—_1) +1.8478c(1z—_1)+1>
1+z 1+z 1+z 1+z

4
_ (1+z71)
~ (9.5578—11.1851z"1+45.6273272)(12.337—11.18512z"1+2.8481272)

H(z) =

Step 4: Obtain time-domain representation. Do it yourself as an exercise.

e Magnitude spectrum, magnitude dB spectrum and pole-zero plot of
the filter are shown below where the cutoff frequency is w. = 0.24.
w, can be computed using equation

w = 2tan™?! (9)

Cc
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Example 2 (cont.)
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Pair of Poles Solution

e Asinthe Example 2, there are two pairs of poles (N = 4). Thus,
denumerator of H(z) is presented by multiplication of two sets of
the 2"9 order expressions.

e For each pair of poles, the transformation using the bilinear
transformation from H(s) to H(z) where Q0. = 1 can be written as

H(s) = H@ =0T
> TSt as+1 2 T b + byz L+ byz 2
by =c*+ac+1
b2:_2C2+2
by =c?*—ac+1
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Pair of Poles Solution (cont.)

e When N is odd, there will be one extra poles after pairing all
conjugation poles. The transformation of the extra poles from H(s)
to H(z) where Q). = 1 can be written as

H —
(S) s+1 dl + dzZ_l
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Example 3

e Convert H(s) to H(z) for the 4" order Butterworth filter shown
below using bilinear transformation. Assume ¢ = 1
1

H(s) =
() = 5237076545 + D2 + 184785 + 1)

Solution:
e From bilinear transformation, H(z) can written as

(1+z H*
(bl + bzz_l + b3Z_2)(d1 + dzz_l + d3Z_2)

H(z) =



ocw.utm.my @ HT M

FEELN

Example 3 (cont.)

where

b, = 1% +0.7654 + 1 = 2.7654 d, = 1% +1.8478 + 1 = 3.8478
b, =—2+2=0 d,=—2+2=0

b; =12 —0.7654 + 1 = 1.2346 d; =14 —1.8478+ 1 = 0.1522

Thus,

(1+z71)*
(2.7654 + 1.23462-2)(3.8478 + 0.15222-2)

H(z) =
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Example 4

e Design an lIR Butterworth filter with w, = 0.5, w; = 0.9 and
6, = 0.01

Solution:

Step 1: Specify filter characteristics. Use filter characteristics as given
in the question.

Step 2: Find system function of the continuous filter by computing N
from the magnitude squared equation of the Butterworth
filter where
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Example 4 (cont.)

(; = c.tan (%) = c.tan (%) = 6.3138c¢

¢ value can be computed from equation below with Q. =1
(. = c.tan (%)

From there, ¢ = 1. Thus o, = 6.3138 and the magnitude squared
equation becomes

= 0.0172

1+ 6.31382V
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Example 4 (cont.)

Rearranging the magnitude squared equation leads to the
formulation of N as below

ML ) BT NP
09Qg 2 \0.8

Finally, with Q. = 1 and N = 3, the system function of the
continuous-time filter is

1
(s+1)(s?+s+1)

H(s) =

©UIM
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Example 4 (cont.)

Step 3: Transform H(s) to H(z)

1-z"1
S=C
14271

Thus,

B (1+z7 1) (1427 1)
H(Z) B (Cll+a22_1)(b1+b22_1+b32_2)
where

a,=1+c=2

a,=1—-—c=0
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Example 4 (cont.)
by =c*+ac+1=3.4142

b, =—2c*+2=0
b; =c*—ac+1=0.5858

Finally,
14+2z71)3
H(z) = ( ) —
2(3.4142 + 0.585822)
14+2z71H)3
= (0.1464 ( )

(1+0.1716z72)
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Example 4 (cont.)

Step 4: Obtain time-domain representation.

143z 143272423

H(z) = 0.141
(z) = 01416 ——=—— ===

y|n] = 0.1416(x[n] + 3x[n — 1] + 3x[n — 2] + x[n — 3])
—0.1716y|n — 2]




|H(w)|

|H(w)ap

1.5

-100
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Example 4 (cont.)

w(mrad)
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Example 4 (cont.)
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Example 5

Design an |IR Butterworth filter that will attenuate frequencies
component at w = 0.5m and w = 0.9 in signal x|[n] shown below.
Also shown are the signal’s magnitude and phase spectrum.

0 10 20 30 40 &0 G0 70 a0 90 100



| X(w)]

X (w)
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Example 5 (cont.)

|
4D _--ﬁ -------------- & ------------- E---E---a ------------- ‘4 ------------- ‘ér-_
| A N — -
g LI | Tl i
1-0.9 0.5 01 0 0.1 0.5 0.9 1
w
2 " T !
o il . NN
el 1 | |1 |
1-0.9 05 01 0 0.1 0.5 0.9 1

©UIM

PR g



ocw.utm.my

Example 5: 24 order BF

Solution:

* Below are the solution by applying 2"9 order and 9% order IIR
Butterworth filter to signal x[n] with w, = 0.37

e 279 order Butterworth filter:

FEELN

©UIM

|H(w)
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Example 5: 2nd order BF

b ! T T J T T I
s | s
m ! 1
< : :
el | 11 | |
1-09 05 01 0 01 0.5 09 1

Imaginary Part
=
s




Example 5: 24 order BF
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Output
50— : : : :
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= : : : : :
20 p-mqmmmmmm e R e -
0 JI. m | i l m JI.
109 05 01 0 01 05 09 1
w(mrad)
. r T ) !
3 i : ! i
r Opn : X 5
S ! ! ! '
el 1 i L1 | i
109 05 01 001 05 09 1

w(mrad)
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Example 5: 2" order BF

y[n]
2 . . . . . . . .
| W
2

] ] ] ] ] ] ] ] ]
0 10 20 30 40 a0 60 70 a0 90 100
n
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Example 5: 9th order BF

oth order Butterworth filter

1

0.5

|H(w)|

¢H(w)
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Example 5: 9t order BF
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Output
60

40

|H(w)|

20

¢H(w)
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Example 5: 9th order BF

i I 1] i 1
0.9 0.5 0.1 0 0.1 0.5 0.9 1
w(mrad)

I I I T 1 I

0.9

0.5 01 0 0.1 0.5 0.9 1
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Example 5: 9th order BF

y|n]

]
90 100
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