| @ UTM

USIVEREIT TEINOLDG! MALAYSA

SCJ2013 Data Structure & Algorithms

Recursive

Nor Bahiah Hj Ahmad & Dayang
Norhayati A. Jawawi

[@lecie]

I ocw.utm.my

ocw.utm.my @UIM

Objectives

At the end of the class students should be able
to:

* |dentify problem solving characterestics using
recursive.

* Trace the implementation of recursive
function.

* Write recursive function in solving a problem

12/8/2011

ocw.utm.my @UTM

Introduction

Repetitive algorithm is a process wherby a
sequence of operations is executed repeatedly
until certain condition is achieved.

Repetition can be implemented using loop :
while, for Or do..while.

Besides repetition using loop, C++ allow
programmers to implement recursive to
replace loops.

Not all programming language allow recursive
implement, e.g. Basic language.

ocw.utm.my @UTM

Introduction

* Recursive is a repetitive process in which an
algorithm calls itself.

e Recursively defined data structures (like lists)
are very well-suited to be processed using
recursive procedure.

e A recursive procedure is mathematically more
elegant than one using loops. Sometimes
procedures can become straightforward and
simple using recursion as compared to loop
solution procedure.

Introduction

* Advantage : Recursive is a powerful problem
solving approach, since problem solving can
be expressed in an easier and neat approach.

* Drawback : Execution running time for
recursive function is not efficient compared to
loop, since every time a recursive function
calls itself, it requires multiple memory to
store the internal address of the function.

ocw.utm.my ©UIM

Recursive solution

* Not all problem can be solved using recursive.

* Recursive solve problem by:

1. breaking the problem into the same smaller
instances of problem,

2. solve each smallest problem and
3. combine back the solutions.

12/8/2011

ocw.utm.my @UTM

Understanding recursion

Every recursive definition has 2 parts:

 BASE CASE(S): case(s) so simple that they can
be solved directly

 RECURSIVE CASE(S): more complex and make
use of recursion to:

— break the problem to smaller sub-problems and
— combine into a solution to the larger problem

12/8/2011

ocw.utm.my @UTM

Rules for Designing Recursive
Algorithm

Determine the base case — is terminal case,
there is one or more terminal cases whereby
the problem will be solved and stop to call
recursive function.

Determine the general case — recursive call
by reducing the size of the problem

Combine the base case and general case into
an algorithm

12/8/2011

ocw.utm.my @UTM

Designing Recursive Algorithm

* Recursive algorithm.

—

If (terminal case is reached) // base case

<solve the problem> Base case |
else /l general case | i‘ggeg;”era
< reduce the size of the problem and combined

call recursive function >

12/8/2011

ocw.utm.my @UTM

Classic examples

* Multiplying numbers
* Find Factorial value.
* Fibonacci numbers

12/8/2011

ocw.utm.my @UTM

Multiply 2 numbers using Addition
Method

 Multiplication of 2 numbers can be achieved
by using addition method.

 Example:

To multiply 8 x 3, the result can also be achieved
by adding value 8, 3 times as follows:

8 +8 +8 =24

12/8/2011

ocw.utm.my @ UTM

Implementation of Multiply ()
using loop

int Multiply(int M,int N)

{ for (int i=1l,i<=N,i++)
result += M;
return result;
}//end Multiply ()

12/8/2011

ocw.utm.my @UTM

Solving Multiply problem recursively

Steps to solve Multiply() problem recursively:

* Problem size is represented by variable N. In this
example, problem size is 3. Recursive function will call
Multiply () repeatedly by reducing N by 1 for each
respective call.

* Terminal case is achieved when the value of N is 1 and
recursive call will stop. At this moment, the solution for
the terminal case will be computed and the result is
returned to the called function.

 The simple solution for this example is represented by
variable M. In this example, the value of M is 8.

12/8/2011

] ocw.utm.my _] @QTM
Implementation of recursive function:

Multiply ()

int Multiply (int M,int N)
{

1f (N==1)
return M;
else

return M + Multiply(M,N-1) ;
}//end Multiply ()

12/8/2011

ocw.utm.my @UTM

Recursive algorithm

3 important factors for recursive
implementation:

* There’s a condition where the function will
stop calling itself. (if this condition is not
fulfilled, infinite loop will occur)

e Each recursive function call, must return to
the called function.

e Variable used as condition to stop the
recursive call must change towards terminal
case.

ocw.utm.my

©

UTM

) S S

Tracing Recursive Implementation

12/8/2011

forMultiply ().

5

5

5

0

tep 1: Getthe multiplication of 2 numbers.
Problem: Multiplv (8, 3) :

tep 2: Run Multgly() function.

v
Sub probleml: int Multiplvint M, int)
Value of M =2 and N =3.
Since W = 1, Multiplv() will be called and the parameter valueis reduced

l return 8 +| Moltiply (8,3{1) |

tep 3: Run Multiply() function.
v
Sub problem?: int Multiplv(int M, int M)

Value of M =2 and N =z.
Since W = 1, Multiplv() will be called and the parameter valueis reduced

l retnrn 8 +|Multipl}ri8,21—l] |

tep 4: Run Multiplv() function..

Sub problem3; ; int Multiplv(int M, int M)
Value of M =2 and N =1.
When W=1_ terminal caseis achieved.

retorn |8

oo

ocw.utm.my

©

Returning the Multiply () result

12/8

to the called function

Step 8: Final result after multiply 2 numbers.

RESULT: 24

Step 7: Return the result to the\called function, main () .

Step 6: Return the resultto su@yroblem 1

Terminal case is achived from sub problem?2.

Step 5: Return the result to|subproblem 2

Terminal case is achived from sub problem3.

return | 8 |

UTM

) S S

ocw.utm.my @UTM

Factorial Problem

* Problem : Get Factorial value for a positive
integer number.

e Solution : The factorial value can be achieved
as follows:

Olisequalto 1
1lisequalto1x0/=1x1=1
2lisequalto2x1/=2x1x1=2
3lisequalto3x2/=3x2x1x1=6
4lisequaltod x3/=4x3x2x1x1=24
N!is equal to N x (N-1)! For every N>0

12/8/2011

ocw.utm.my @UTM

Solving Factorial Recursively

1. The simple solution for this example is
represented by the factorial value equal to 1.

2. N, represent the factorial size. The recursive
process will call factorial () function
recursively by reducing N by 1.

3. Terminal case for factorial problem is when
N equal to 0. The computed result is
returned to called function.

12/8/2011

ocw.utm.my @ UM

Factorial function

int Factorial (int N)
{ /*start Factorial*/
if (N==0)
return 1;
else
return N * Factorial (N-1);
} /*end Factorial

It checks whether N is equal O. If so, the
function just return 1.

Otherwise, it computes the factorial of (N — 1)
and multiplies it by N.

12/8/2011

Execution of Factorial (3)

12/8/2011

ocw.utm.my

STEP 1: Get factonial 3.
Problem: Factorial (3) ;

STEP 2: Bun Factorial ().

Subproblem 1: int Factorial (int N)
Value for N=3.

Since N= 0, Factorial () is called bvreducing the parameter value.

STEP 3: Bun Factorial (). ¥
Subproblem 2: int Factorial (int N)

Value fornw =2,

Since N= 0, Factorial () is called bvreducing the parameter value.

return N *' Factorial {(Z-1) ;

STEP 4: Fun Factorial () ..
¥

Subproblem 3: int Factorial (int N)
Value for v =1.

Since N= 0, Factorial () is called bvreducing the parameter value.

return N *' Factorial{(l-1);

©

UTM

Y SO AT

ocw.utm.my

©

Terminal case for Factorial (3)

STEPi:RMHFactcriale.

Subproblem 4: int Factorial (int N)

Value forw =1,

Since N= 0, terminal case 1s achieved.

return
Sttt et

1

12/8/2011

UTM

Y SO AT

ocw.utm.my ®©UTM

Execution of Factorial (3)

STEP 10: Finalresult for Factorial (3).

RESULT: 6

STEP 9: Return the result to the dalled function, main ().

Terminal case is achieved for Sub problem 1.

Return value
for
Factorial(3)

STEP 6: Peturn the result to Sub/aéblem 3.

Terminal case is achieved for Sub problem 4.

return
A

12/8/2011

ocw.utm.my @UTM

Fibonacci Problem

Problem : Get Fibonacci series for an integer positive.
Fibonacci Siries:0,1,1, 2, 3,5, 8,13, 21,.....
Start from O and 1

Every Fibonacci series is the result of adding 2 previous
Fibonacci numbers.

Solution: Fibonacci value of a number can be
computed as follows:

Fibonacci (0)=0

Fibonacci(1)=1

Fibonacci(2)=1

Fibonacci (3) =2

Fibonacci (N) = Fibonacci (N-1) + Fibonacci (N-2)

12/8/2011

ocw.utm.my @UTM

Solving Fibonacci Recursively

1. The simple solution for this example is

represented by the Fibonacci value equal to
1.

2. N, represent the series in the Fibonacci
number. The recursive process will integrate
the call of two Fibonacci () function.

3. Terminal case for Fibonacci problem is when
N equal to O or N equal to 1. The computed
result is returned to the called function.

12/8/2011

ocw.utm.my @ UTM

Fibonacci () function

int Fibonacci (int N)
{ /* start Fibonacci*/
if (N<=0)
return O;
else i1if (N==1)
return 1;
else
return Fibonacci (N-1) + Fibonacci (N-2);

}

12/8/2011

e Passing and returning value from function.

ocw.utm.my

Implementation of
Fibonacci ()

"‘“:.‘.-.._
=

Fibonacci(3)
L1

=
Ses L 10

return

return 1

Fihﬂﬂﬂtti(ld +

=
= —

|
! .. return 2

|
_li
|

— =
I 2 E Fi =
) o "'-..__
Y T =
T

return

retum 1 + 0
.. return 1

Fibonacci(1) Fibonacci(0)

L3 I

L :)-]

n
h 4 n

return 0

L4 n
[
return 1 !

L6
|
|
|

ocw.utm.my @UTM

Infinite Recursive

* Impossible termination condition

e How to avoid infinite recursion:

— must have at least 1 base case (to terminate the
recursive sequence)

— each recursive call must get closer to a base case

12/8/2011

ocw.utm.my

Infinite Recursive : Example

#include <stdio.h>
#include <conio.h>

void printIntegesr (int n) ;
main ()

{ int number;

cout<<“\nEnter an integer value

cin >> number;
printIntegers (number) ;

}

void printIntegers (int nom)
{ cout << “\Value : “ << nom;
printIntegers (nom) ;

12/8/2011

No condition
satatement to
stop the
recursive call.

. Terminal case

variable does
not change.

ocw.utm.my @UTM

Improved Recursive function

#include <stdio.h>

#include <conio.h> Exercise: Give the

output if the value

void printIntegers (int n); entered is 10 or 7.
main ()
{ int number;
cout<<“\nEnter an integer value :”;
cin >> number;
printIntegers (number) ;

condition satatement

} .
— to stop the recursive

void printIntegers (int nom)
{ if (nom >= 1) call and the changes
cout << “\Value : “ << nom; >>__Inthetewnmajcase
printIntegers (nom-2) ; vaonezﬂe
} provided.

12/8/2011

ocw.utm.my @UIM

Conclusion and Summary

Recursive is a repetitive process in which an
algorithm calls itself.

Problem that can be solved by breaking the
problem into smaller instances of problem, solve
and combine.

Every recursive definition has 2 parts:
= BASE CASE: case that can be solved directly

= RECURSIVE CASE: use recursion to solve smaller sub-
problems & combine into a solution to the larger
problem

12/8/2011

ocw.utm.my @UTM

References

Nor Bahiah et al. Struktur data & algoritma
menggunakan C++. Penerbit UTM, 2005

Richrd F. Gilberg and Behrouz A. Forouzan,
“Data Structures A Pseudocode Approach
With C++”, Brooks/Cole Thomson Learning,
2001.

12/8/2011

