Basic Genetics (SQBS 2753)

THE CHROMOSOMAL BASIS OF MENDELISM

Azman Abd Samad

Outline

Chromosomes

The Chromosome
Theory of
Heredity

Sex-linked Genes in Human Beings

Sex Chromosomes and Sex Determination Dosage
Compensation of
X-linked Genes

Chromosomes are cellular structures that transmit genetic information

- Breeding experiments and microscopy provided evidence for the chromosome theory of inheritance
- Proper development relies on accurate transmission of genes and accurate maintenance of chromosome number
- The abstract idea of a gene was changed to a physical reality by the chromosome theory

Evidence that genes reside in the nucleus

- 1667 Anton Van Leeuwenhoek
 - Microscopy revealed that semen contain spermatozoa ("sperm animals")
 - Hypothesized that sperm may enter egg to achieve fertilization
- 1854 1874
 - Direct observations of fertilization through union of nuclei of eggs and sperm (frog and sea urchin)
 - Conclusion: something in the nucleus must contain the hereditary material

Evidence that genes reside in chromosomes

- 1880s improved microscopy and staining techniques
 - Long, threadlike bodies (chromosomes) visualized in the nucleus
 - Movement of these bodies followed through cell division
- Mitosis nuclear division that generates two daughter cells containing the same number and type of chromosomes as parent cell
- Meiosis Nuclear division that generates gametes (egg and sperm) containing half the number of chromosomes found in other cells

Diploid versus haploid: 2n versus n

- Most body cells are diploid (each chromosome pair has one maternal and one paternal copy)
- Meiosis → haploid (n) gametes
 - In Drosophila, 2n = 8, n = 4
 - In humans , 2n = 46 and n = 23

Chromosome

- DNA molecule is packaged into thread-like structures
- Chromatin DNA & protein

Metaphase chromosomes can be classified by centromere position

- Metacentric chromosome centromere is in the middle
- Acrocentric chromosome centromere is near one end

Metacentric Chromosomes

Acrocentric Chromosomes

Chromosome

- each chromosome is duplicated & the duplicated chromosomes are referred to as dyads.
- sister chromatids each chromosome carrying full genes compliment.
- centromere(constriction point) 2 parts or "arms".
 - The short arm -p arm; long arm-q arm.
- kinetochore -an attachment point separate the sister chromatids in mitosis.

Chromosome Number

- Haploid (n)
 - Basic, chromosome number, a set of chromosome
- Diploid (2n)
 - Two of each of the chromosome somatic cell
- Tetraploid (4n), octoploid (8n)

Example of chromosome number in organisms

0000000	Organism	Haploid (n)
Simple eukaryotes	Yeast (Saccharomyces cerevisiae)	16
	Mold (Neurospora crassa)	7
Plants	Maize (<i>Zea mays</i>)	10
	Wheat (<i>Triticum aestivum</i>)	21
	Tomato (Lycopersicon esculentum)	12
Invertebrate	Fruit fly (<i>Drosophila melanogaster</i>)	4
	Mosquito (Anopheles culicifacies)	3
	Nematode (Caenorbabditis elegans)	6
Vertebrate	Human being (Homo sapiens)	23
	Mouse (Mus musculus)	20
	Cat (Felis domesticus)	36
	Chicken (Gallus domesticus)	39
	Fish (<i>Esox lucius</i>)	25

Homologous chromosomes are matched in size, shape, and banding patterns

- Homologs contain the same set of genes, but can have different alleles for some genes
- Nonhomologs carry completely unrelated sets of genes
- Karyotype micrograph of stained chromosomes arranged in homologous pairs
 - Sex chromosomes unpaired X and Y chromosome
 - Autosomes all chromosomes except X and Y
- Cells of each species have a characteristic diploid number of chromosomes
 - e.g. *D. melanogaster*, 2n = 8; sweet peas, 2n = 14; goldfish, 2n = 94; dogs, 2n = 78

Karyotype of a human male

- Photos of metaphase human chromosomes (2n = 46, n = 23)
- Each homologous pair arranged in order of decreasing size
- http://www.visualsunlimited.com/image/I00

Sex determination in fruit flies and humans

- In *Drosophila*, ratio of X chromosomes to autosomes determines gender
- In humans, presence or absence of Y chromosome determines gender
- Abnormal numbers of X or Y chromosomes have different effects in humans and flies

	SEX CHROMOSOMES					
	XXX	XX	хо	XY	XXY	XYY
Human	Nearly normal female	Normal female	Turner female (sterile)	Normal male	Klinefelter male (sterile)	Normal or nearly normal male
Drosophila	Dies	Normal female	Sterile male	Normal male	Normal female	Normal male

Mechanisms of sex determination differ between species

- Heterogametic sex gender with two different kinds of gametes
- Homogametic sex gender with one type of gamete

	Male	Female
Human	XY	XX
Drosophila	XY	XX
Birds and butterflies	ZZ	ZW
Bees and wasps	haploid	diploid
Lizards, alligators	warm temperature	cool temperature
Tortoises, turtles	cool temperature	warm temperature
Anemone fish	young adults	older adults

THE CHROMOSOME THEORY OF HEREDITY

The chromosome theory of inheritance

- Walter Sutton 1903, chromosomes carry Mendel's units of heredity
- Two copies of each kind of chromosome
- Chromosome complement is unchanged during transmission to progeny
- Homologous chromosomes separate to different gametes
- Maternal and paternal chromosomes move to opposite poles
- Fertilization of eggs by random encounter with sperm
- In all cells derived from fertilized egg, half of chromosomes are maternal and half are paternal

Validation of the chromosome theory

Prior to 1910, the chromosome theory of inheritance was supported by two circumstantial lines of evidence

- Sex determination associates with inheritance of particular chromosomes
- Events in mitosis, meiosis, and gametogenesis ensure constant numbers of chromosomes in somatic cells

This theory confirmed and validated by:

- Inheritance of genes and chromosomes correspond in every detail
- Transmission of particular chromosome coincides with transmission of traits other than for sex determination

Chromosome Theory of Heredity

- Studies on the inheritance of a sex-linked trait in *Drosophila*
 - The meiotic behavior of chromosome
 - Basis for Mendel's Principles of Segregation and Independent Assortment
- Thomas H. Morgan (1990) fruit fly,
 Drosophila melanogaster
 - Genes are located on chromosomes

Inheritance of white eye in Drosophila

P

Eye color – X Chromosome

 F_1

 F_2

SEX-LINKED GENES IN HUMAN BEINGS

Sex-linked

 Sex chromosomes (X & Y) not only carry genes that determine male / female traits but some other characteristics too.

- Genes of sex chromosome = sex-linked
 - Y-linked men only; both for X-linked

Men - X and Y; women - two X's.

Sex linkage in human

Human X-linked Traits

Condition	Characteristics		
Hemophilia A	Clotting deficiency; deficiency of clotting factor VIII		
Hemophilia B	Deficiency of clotting factor IX		
G-6-PD	Deficiency of glucose-6-phosphate		
Color blindness, deutan type	Insensitivity to green light		
Color blindness, protan type	Insensitivity to red light		
Fabry's disease	Deficiency of galactosidase A; heart and kidney defects, early death		
Lesch-Nyhan syndrome	Deficiency of hypoxanthine-guanine phosphoribosyltransferase enzyme (HPRT) leading to motor and mental retardation, self-mutilation and early death		

Hemophilia inheritance

An X-linked Blood-Clotting Disorder

ocw.utm.my

Blood coagulation

Color Blindness

Key Points

- Disorders such as hemophilia and color blindness, which are caused by recessive X-linked mutations, are more common in males than in females.
- In humans the Y chromosome carries fewer genes than the X chromosome.
- In humans pseudoautosomal genes are located on both the X and Y chromosomes.

SEX CHROMOSOMES AND SEX DETERMINATION

Sex Determination in *Drosophila*

- Y Chromosome plays no role in sexual phenotype but requires for male sterility – Bridges, 1921.
- X-linked gene, Sxl (sex lethal) key in sex determination.
- If X:A ≥ 1.0, sxl activates, zygote develops a female.
- If X:A ≤ 0.5 , sxl inactivates, develops as a male.

Ratio of X Chromosomes to Autosomes and the Corresponding Phenotype in *Drosophila*

X: A Ratio	Phenotype
0.5	Male
1.0	Female
1.5	Metafemale
1.33	Metafemale
1.0	Tetraploid female
1.0	Triploid female
0.75	Intersex
0.67	Intersex
0.5	Tetraploid male
0.33	Metamale
	0.5 1.0 1.5 1.33 1.0 1.0 0.75 0.67 0.5

Sex Determination in Human Beings

- SRY gene –sex-determining region Y;
 - Gene product- testis determining factor (TDF)

Normal male with the wild-type Tfm gene

Male with the tfm mutation and testicular feminization

Notes:

- Mutation tfm (X-linked)
- No testosterone receptor
- Female characteristics ovary → sterile

Key Points

- In humans sex is determined by a dominant effect of the SRY gene on the Y chromosome; the product of this gene, the testis-determining factor (TDF), causes a human embryo to develop as a male.
- In *Drosophila*, sex is determined by the ratio of X chromosomes to sets of autosomes (X:A).
- In honeybees, sex is determined by the number of chromosome sets; haploid embryos develop into males and diploid embryos develop into females.

DOSAGE COMPENSATION OF X-LINKED GENES

Hyperactivation of X-linked genes in male *Drosophila*

- Each X-linked gene works twice as hard in males as it does in females.
- X-linked gene in male *Drosophila* is hyperactivated (protein complex binds to the X chromosome and stimulates gene expression)

Phenotype	Genotype	X:A ratio	Sxl gene	Cause
Male	XY AA	0.5	off	Increase in X-linked gene expression
Female	XX AA	1.0	on	No increase in X-linked gene expression

X chromosome inactivation in mammals

X is activated during oogenesis in female

One copy of each X-linked gene is
inactivated in females

X-inactivation center (XIC) – initiating site
– long arm of X chromosome.
inactivated form of X chromosome –
darkly staining structure called a Barr body.

Barr Bodies

- The inactivated X chromosomes are called Barr bodies
- These X chromosomes are replicated mitotically, and reactivated for meiosis
- Once inactivated, the same X chromosome remains inactivated in all descendent cells

Barr Bodies

The Barr bodies (arrows) are visible only in the female nuclei

Tortoiseshell or calico

 The orange and black patches – inactivation of alleles pigmentation

Key Points

- In *Drosophila*, dosage compensation for X-linked genes is achieved by hyperactivating the single X chromosome in males.
- In mammals, dosage compensation for Xlinked genes is achieved by inactivating one of the two X chromosomes in females.

References

- Snustad DP, Simmons, MJ (2010) Principles of Genetics Fifth Ed. John Wiley & Sons, Inc., USA.
- Klug WS, Cummings MR, Spencer CA, Palladino MA (2012) Concepts of Genetics. 10th Ed. Pearson, California.
- Hartwell LH, Hood L, Goldberg ML, Reynolds AE, Silver LM (2011) Genetics: From Genes to Genomes. 4th Ed. McGraw-Hill Companies, Inc., NY