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Optimization is the science and the art of 
determining the best solutions

to problems

Definition of Optimization 



Why OPTIMIZE?

Budget/Financial reason

Largest production

Greatest profit

Minimum cost

Least energy usage

Plant performance

Improved yields of valuable products 

Reduced energy consumption

Higher processing rates

Longer time between shutdowns

Reduced maintenance costs



Optimization of a 
Distillation Column at Design Stage

The relationship between the number of stages and the 
reflux ratio is linked to capital cost and the operating cost.

The more stages, the higher the capital cost and the lower 
the operating cost.

Choose No. of stages and reflux ratio to minimize total 
cost while meeting specifications.
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Operating cost:
e.g. utility costs (steam & cooling water)

capital cost (equipment)



min f(xi)
xi

i = 1, 2, … i

Subject to
c(xi) = 0 g(xi) ≥ 0

objective function to be 
minimised (or 
maximised)

vector of decision 
variables to be chosen to 
find the min. of f(x)

equality 
constraints

in-equality 
constraints

Features of Optimization Problem



Terminology
Objective function

Function that you wish to minimize or maximize, usually an 
economic value eg. maximize profit, production rate, throughput, 
minimize energy utilisation, cost

Decision variables
Variables that you can adjust (manipulate) or chose in order to 
minimize or maximize the objective function
Variables can be:

Real eg. flow rates, concentration, temperature, pressure
Integers eg. No. of trays 
Binary eg. Select/not select - plant process flowsheet

Constraints
Limitations on the free adjustment of decision variables. They can 
be physical, economic, policy, or environmental
Constraints can be explicitly defined in terms of the decision 
variables 



Linear Objective Function

x

f(x)

x

f(x)

xopt = xU

Unconstrained
No equality and inequality 
constraints, no solution 

exists

Constrained
subject to inequality 

constraint. x ≤ xU. Optimal 
solution is at the bound

Maximum objective function is desired.



Non‐Linear Objective Function

x

f(x)

x

f(x)

xopt = xU

Subject to slack constraint
(constraint is at a lower 
limit of x, or x ≥ xL.  The 
optimal value is at the 
maximum value of the 

objective function)

Subject to binding constrained
(x ≤ xU, bound is below the 

value of maximum objective 
function)

xL xopt

Maximum objective function is desired.



LINEAR PROGRAMMING (LP) MODEL
Example 1

A farmer is preparing to plant a crop in the spring and needs to fertilize a field.  There are 
two brands of fertilizer to choose from, Super-gro and Crop-quick.  Each brand yields a 
specific amount of nitrogen and phosphate per bag, as follows:

Chemical Contribution
Product            Nitrogen                  Phosphate

(lb/bag)                     (lb/bag)

Super-gro 2                                  4
Crop-quick           4                                   3

The farmer requires at least 16 pounds of nitrogen and 24 pounds of phosphate.  
Super-gro costs $6/bag, and Crop-quick costs $3/bag.  The farmer wants to know how 
many bags of each brand to be purchased in order to MINIMIZE the total cost of 
fertilizing.



Solution for Example 1:

Step 1: Define the decision variables
x1 = bags of Super-gro
x2 = bags of Crop quick

Step 2: Define the objective function
min f(x) = 6x1 + 3x2

Step 3: Define the equality and inequality constraints
Equality constraint
None except if the farmer said that the phosphate requirement must be  
exacly 24 pound, the constraint should be written 
4x1 + 3x2 = 24         (phosphate constraint)

Inequality constraint
2x1 + 4x2 ≥ 16         (nitrogen constraint)
4x1 + 3x2 ≥ 24         (phosphate constraint)

Non-negativity constraints – to indicate that negative bags of fertilizer 
cannot be purchased
x1, x2 ≥ 0

Step 4: Simplification – not necessary
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4x1 + 3x2 =24

2x1 + 4x2 = 16

Step 5: Apply suitable optimization technique  

Step 6: Perform sensitivity analysis e.g. What if the cost of raw material is increased by 10%.

3 points that satisfy the constraints, and the respective
costs for each point are,

x1 = 0, x2 = 8:  $24
x1 = 5, x2 = 2:  $36
x1 = 8, x2 = 0:  $48

Therefore, the minimum cost is $24.



Example 2

Ready-Mixes produces both interior and exterior paints from two raw material,
M1 and M2.  the following table provides the basic data of the problem

Tons of raw material per ton of
Exterior paint             Interior paint

M1                  6 4                              24
M2                  1    2 6

A market survey indicate that’s the daily demand for interior paint cannot 
exceed that for exterior paint by more than 1 ton.  Also, the maximum 
daily demand for interior paint is 2 tons. Determine the optimum (best) 
product mix of interior and exterior paints that maximizes the total daily 
profit.

Maximum daily
availability (tons)

Profit per        5                                    4
ton ($1000)       



Step 1 : Define the decision variable, 
x1 = tons produced daily of exterior paint
x2 = tons produced daily of interior paint

Step 2 : Define the objective function
Max total daily profit  = 5x1 + 4x2

Step 3: Define equality & inequality constraint

6x1 + 4x2 ≤ 24 (M1 constraint)
x1 + 2x2≤ 6 (M2 constraint)
x2 - x1≤ 1 (market limit)
x2 ≤ 2 (demand limit)

Solution for Example 2:



Step 4: Simplification
Not applicable

Step 5: Choose the best suitable optimization technique
The optimization problem is comprised of a linear function and linear constrained, hence 
linear programming would be the best technique. Use graphical method to find the 
optimum value.  Verify your answer using Excel Solver add-in.
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Example 3

During the 2002 Winter Olympics in Salt Lake City, Utah, a local plant 
X received a rush order for 100 gals of A containing 4.0% vol%
alcohol.  Although no 4% A was in stock, large quantities of A-4.5 with
4.5% alcohol at a price of $6.40/gal and A-3.7 with 3.7% alcohol
priced at $5.00/gal were available, as well as water suitable for
adding to the blend at no cost.  The plant manager wanted to use at
least 10 gal of A-4.5.  Neglecting any volume change due to mixing,
determine the gallons each of A 4.5, A-3.7, and water that should be
blended together to produce the desired order at the minimum cost. 
Use 6 steps approach to solve optimization problem.  



Solution to Example 3:

Step 1: Define the decision variables   
V4.5 = gallons of A-4.5 
V3.7 = gallons of A-3.7
Vw = gallons of water

Step 2: Define the objective function
Minimize Cost, $ = 6.40V4.5 + 5.00 V3.7 + 0.00VW                    (eq 1)

Step 3: Define the equality & inequality constraints

Equality constraints
0.045V4.5 + 0.037 V3.7 + 0.00VW = 0.04(100) = 4.00   (eq 2)
V4.5 + V3.7 + VW = 100                                                 (eq 3)

Inequality constraints
V4.5 ≥ 10
V3.7 ≥ 0
VW ≥ 0



Step 4 : Simplification.

The problem can be reduced to two decision variables by solving (eq 3) for 
V3.7, 

V3.7 = 100 – V4.5 – VW (eq 4)

And substituting it into (eqs 1 and 2) to give the following restatement of this problem:

Minimize Cost, $ = 1.40V4.5 - 5.00VW +500
Subject to:

0.008V4.5 + 0.037 VW =0.03 (eq 5)
V4.5 ≥ 10
V3.7 ≥ 0
VW ≥ 0

The optimal volume of A-3.7 need only to be calculated from (eq 4), after the optimal 
volumes of A-4.5 and water have been determined from (eq 5).  Since the objective 
function, the equality constraints, and the lower and upper bound are all linear, this 
constitutes an LP problem.



Step 5 : Choose suitable optimization technique
With just two decision variables, the problem can be shown graphically on a plot of V
against cost as shown in the following figure.

V4.5 (gal) V3.7 (gal) VW (gal) Cost ($)

10 95.95 -5.95 543.73

15 89.86 -4.86 545.32

20 83.78 -3.78 546.92

25 77.70 -2.70 548.51

30 71.62 -1.62 550.11

35 65.54 -0.54 551.70

40 59.46 0.54 553.30

45 53.38 1.62 554.89

50 47.30 2.70 556.49

55 41.22 3.78 558.08

60 35.14 4.86 559.68

65 29.05 5.95 561.27

70 22.97 7.03 562.86

75 16.89 8.11 564.46

80 10.81 9.19 566.05

85 4.73 10.27 567.65

90 -1.35 11.35 569.24
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With the constrained given, the optimal solution is when V4.5 is 37.5 gal, V3.7 is 
62.5 and V is 0 with the minimum cost at $552.50.



Example 4
A chemical plant makes three products 
(E, F, G) and utilizes three raw materials
(A, B, C) in limited supply.  Each of the
three products is produced in a separate
process (1, 2, 3); a schematic of the plant
is shown in Fig. 2.  The available materials
A, B and C do not have to be totally
consumed. Find the optimum production  
to maximize the total operating profit per 
day in $/day.

Raw
Material

Maximum 
available, 

lb/day
Cost, 

cent/lb

A 40,000 1.5

B 30,000 2.0

C 25,000 2.5

Process Product
Reactant requirement 
(lb) per lb product

Processing 
cost

Selling price 
of product

1 E 2/3 A, 1/3 B 1.5 cent/lb E 4.0 cent/lb E
2 F 2/3 A, 1/3 B 0.5 cent/lb F 3.3 cent/lb F
3 G 1/2 A, 1/6 B, 1/3 C 1.0 cent/lb G 3.8 cent/lb G



A

B

C

E

F

G

1

2

3

Process 1: A + B E
Process 2: A + B F
Process 3: 3A + 2B + C G

The reactions involving A, B and C are as follows:



Step 1 : Define the decision variable
XA, XB, Xc, XE, XF, XG

Step 2 : Define the objective function
Profit = Income – raw material cost – Processing cost

Income = 0.04 xE + 0.033 xF + 0.038 xG
Operating costs in $ per day include: 

Raw material costs : 0.015xA + 0.02xB + 0.025xC
Processing costs: 0.015xE + 0.005xF + 0.01xG

Min f(x) = (0.04xE + 0.033xF + 0.038xG) – (0.015xA + 0.02xB + 0.025xC + 0.015xE
+ 0.005xF + 0.01xG)

Step 3: Define equality & inequality constraint
Equality constraint, from material balances, 

xA = 0.667 xE + 0.667 xF + 0.5 xG
xB = 0.333 xE + 0.333 xF + 0.167 xG
xC = 0.333 xG
xA + xB + xC = xE + xF + xG



Inequality constraint
Three are also bounds on the amount of A, B, and C processed: 

xA ≤ 40,000
xB ≤ 30,000
xC ≤ 25,000

Step 4: Simplification
Not applicable

Step 5: Choose the best suitable optimization technique
The optimization problem is comprised of a linear function and linear 
constrained, hence linear programming would be the best technique. 
However, this problem cannot be solve using graphical technique because it 
consists of more than 2 variables.  Solve using computation e.g. Excel Solver.





Try this one…

The Nusajaya Fertilizer Company produces two brands of lawn fertilizer - NJ1 and NJ2 at
plants in Tanjung Langsat and Tampoi.  The plant at Tanjung Langsat has resources
available to produce 5,000 kg of fertilizer daily; the plant at Tampoi has enough resources
to produce 6000 kg daily. The cost per kg of producing each brand at each plant is as
follows:

Plant
Product         Tg. Langsat Tampoi
NJ1                   $2                            $4
NJ2                   $2                            $3

The company has a daily budget of $45,000 for both plants combined.  Based on past
sales, the company knows the maximum demand which is 6000 kg for NJ1 and 7000
kg for NJ2 daily.  The selling price is $9/kg for NJ1 and $7/kg for NJ2.  The company wants
to know how much of fertilizer per brand need to produce at each plant in order to
maximize profit.
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