
Introduction

Mohd Soperi Mohd Zahid

Sazali Abd Manaf

Theory of Computer Science –
SCJ 3203

Outline

• Overview of:

– Automata Theory

– Complexity Theory, and

– Computability Theory

• Mathematical Preliminaries

3

Automata Theory
• deals with the definitions and properties of

mathematical models of computation.
– Finite Automata (FA) used in text processing,

compilers and hardware design.

– Context-free Grammar (CFG) used in programming
languages and artificial intelligence.

4

Complexity Theory
• Computer problems :

– easy  sorting

– hard  scheduling

• What makes some problems computationally hard
and others easy ?

• We don’t know what make them easy and hard but
we know how to classify each problems with an
elegant scheme.
– Cryptography is supposed to be a hard problem.

5

Computability Theory
• There are some problems which can’t be

solved by computers, e.g., determining
whether a mathematical statement is true or
false.

• The object of the Computability Theory is to
classify the problems whether they are
solvable by computers or not.

6

Mathematical Notions and
Terminology Used

• Sets

• Functions and Relations

• Sequences and Tuples

• Trees

• Strings and Languages

• Boolean Logic

• Proof Techniques

7

Sets

• Importance: languages are sets

• A set is a collection of "things," called the
elements or members of the set. It is essential
to have a criterion for determining, for any
given thing, whether it is or is not a member
of the given set. This criterion is called the
membership criterion of the set.

8

Sets

• There are two common ways of indicating the
members of a set:

– List all the elements, e.g. {a, e, i, o, u}

– Provide some sort of an algorithm or rule, such as
a grammar

9

Sets

• Notation:
– To indicate that x is a member of set S, we write x  S

– We denote the empty set (the set with no members) as {}
or 

– If every element of set A is also an element of set B, we say
that A is a subset of B, and write A  B

– If every element of set A is also an element of set B, but B
also has some elements not contained in A, we say that A
is a proper subset of B, and write A  B

10

Operations on Sets

• The union of sets A and B, written
A  B, is a set that contains everything that is
in A, or in B, or in both.

• The intersection of sets A and B, written A 
B, is a set that contains exactly those elements
that are in both A and B.

11

Operations on Sets

• The set difference of set A and set B, written A - B, is
a set that contains everything that is in A but not in
B.

• The complement of a set A, written as -A or (better)
A with a bar drawn over it, is the set containing
everything that is not in A. This is almost always used
in the context of some universal set U that contains
"everything" (meaning "everything we are interested
in at the moment"). Then -A is shorthand for U - A.

12

Additional terminology

• The cardinality of a set A, written |A|, is the number
of elements in a set A.

• The powerset of a set Q, written 2Q, is the set of all
subsets of Q. The notation suggests the fact that a
set containing n elements has a powerset containing
2n elements, including empty set.

• Two sets are disjoint if they have no elements in
common, that is, if AB = .

13

Sequences and Tuples
• A sequence of objects is a list of those objects

in some order.

• Usually designate by writing the list within
parenthesis, e.g. (3,2,5).

• may be finite or infinite.

• finite sequences called tuples.

• sequence with k elements is a k-tuple, e.g.,
(3,2,5) is a 3-tuple.

14

Cartesian product
(Cross product)

• If A and B are two sets, the Cartesian product
of A and B, written A x B, is the set of all pairs
wherein the first element is a member of A
and the second element is a member of B.

15

Relations and Functions

• Importance: need basic familiarity with the
terminology

• A relation on sets S and T is a set of ordered pairs (s,
t), where
– s  S (s is a member of S),

– t  T,

– S and T need not be different,

– The set of all first elements (s) is the domain of the
relation, and

– The set of all second elements is the range of the relation.

16

Trees

• Importance: Trees are used in some
algorithms.

• A tree is a kind of digraph:
– It has one distinguished vertex called the root;

– There is exactly one path from the root to each
vertex; and

– The level of a vertex is the length of the path to it
from the root.

17

Trees

• Terminology:

– if there is an edge from A to B, then A is the parent
of B, and B is the child of A.

– A leaf is a node with no children.

– The height of a tree is the largest level number of
any vertex.

18

Boolean Logic

• AND (conjunction) 

• OR (disjunction) 

• NOT (negation) 

• XOR (exclusive or) 

• Equality  : 1 if both of its operands have the same
value.

• Implication  : 0 if its first operand is 1 and the
second operand is 0; otherwise 1.

Proof techniques

• Construction

– Prove a “there exists” statement by finding the
object that exists

• Contradiction

– Assume the opposite and find a contradiction

• Induction

– Show true for a base case and show that if the
property holds for the value k, then it must also
hold for the value k + 1

Proof by Construction - Example

• A graph is k-regular if all vertices has degree k

• Proof the following theorem:
– For all even numbers n > 2, there exists a 3-regular graph

with n nodes.

• Strategy:
– Find such graph, G by providing formal description of it:

– V = {0, 1, ..., n-1}

– E = {{i, i+1} | for 0 ≤ i ≤ n-2 }  {{n-1, 0}}  {{i, i + n/2}

| 0 ≤ i ≤ n/2 -1 }}

Proof by Contradiction - Example

• A number is rational if it is a fraction m/n where m

and n are integers (e.g. 2/3 is a rational number, 4/6 is

irrational)

• Proof that √2 is irrational.

• Strategy:

– Assume that √2 is rational: √2 = m/n

– When m/n is rational, both m and n cannot be even

numbers

– n√2 = m, 2n2 = m2 by squaring both sides

– so m2 is an even number and can be written as 2k, proceed!

Proof by induction - Example

• Theorem: A binary tree with n leaves has 2n – 1
nodes

• Proving the theorem by induction:

– Basis: Compute number of nodes for a binary tree with
one leave.

– Induction step:
• Assume the theorem is true for binary trees with number of

leaves, n ≥ 1

• Compute the number of nodes for case of n + 1

23

References

