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Outline

• Overview of:

– Automata Theory

– Complexity Theory, and 

– Computability Theory

• Mathematical Preliminaries
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Automata Theory
• deals with the definitions and properties of 

mathematical models of computation.
– Finite Automata (FA) used in text processing, 

compilers and hardware design.

– Context-free Grammar (CFG) used in programming 
languages and artificial intelligence.
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Complexity Theory
• Computer problems :

– easy  sorting

– hard  scheduling

• What makes some problems computationally hard 
and others easy ?

• We don’t know what make them easy and hard but 
we know how to classify each problems with an 
elegant scheme.
– Cryptography is supposed to be a hard problem.
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Computability Theory
• There are some problems which can’t be 

solved by computers, e.g., determining 
whether a mathematical statement is true or 
false. 

• The object of the Computability Theory is to 
classify the problems whether they are 
solvable by computers or not.
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Mathematical Notions and 
Terminology Used

• Sets

• Functions and Relations

• Sequences and Tuples

• Trees

• Strings and Languages

• Boolean Logic

• Proof Techniques
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Sets

• Importance: languages are sets 

• A set is a collection of "things," called the 
elements or members of the set. It is essential 
to have a criterion for determining, for any 
given thing, whether it is or is not a member 
of the given set. This criterion is called the 
membership criterion of the set. 
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Sets

• There are two common ways of indicating the 
members of a set: 

– List all the elements, e.g. {a, e, i, o, u} 

– Provide some sort of an algorithm or rule, such as 
a grammar
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Sets

• Notation: 
– To indicate that x is a member of set S, we write x  S 

– We denote the empty set (the set with no members) as {} 
or 

– If every element of set A is also an element of set B, we say 
that A is a subset of B, and write A  B 

– If every element of set A is also an element of set B, but B 
also has some elements not contained in A, we say that A 
is a proper subset of B, and write A  B 
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Operations on Sets

• The union of sets A and B, written 
A  B, is a set that contains everything that is 
in A, or in B, or in both. 

• The intersection of sets A and B, written A 
B, is a set that contains exactly those elements 
that are in both A and B. 
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Operations on Sets

• The set difference of set A and set B, written A - B, is 
a set that contains everything that is in A but not in 
B. 

• The complement of a set A, written as -A or (better) 
A with a bar drawn over it, is the set containing 
everything that is not in A. This is almost always used 
in the context of some universal set U that contains 
"everything" (meaning "everything we are interested 
in at the moment"). Then -A is shorthand for U - A. 
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Additional terminology

• The cardinality of a set A, written |A|, is the number 
of elements in a set A. 

• The powerset of a set Q, written 2Q, is the set of all 
subsets of Q. The notation suggests the fact that a 
set containing n elements has a powerset containing 
2n elements, including empty set. 

• Two sets are disjoint if they have no elements in 
common, that is, if AB = . 
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Sequences and Tuples
• A sequence of objects is a list of those objects 

in some order.

• Usually designate by writing the list within 
parenthesis, e.g. (3,2,5).

• may be finite or infinite.

• finite sequences called tuples.

• sequence with k elements is a k-tuple, e.g., 
(3,2,5) is a 3-tuple.
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Cartesian product 
(Cross product)

• If A and B are two sets, the Cartesian product 
of A and B, written A x B, is the set of all pairs 
wherein the first element is a member of A 
and the second element is a member of B.
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Relations and Functions

• Importance: need basic familiarity with the 
terminology 

• A relation on sets S and T is a set of ordered pairs (s, 
t), where 
– s  S (s is a member of S), 

– t  T, 

– S and T need not be different, 

– The set of all first elements (s) is the domain of the 
relation, and 

– The set of all second elements is the range of the relation. 
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Trees

• Importance: Trees are used in some 
algorithms. 

• A tree is a kind of digraph: 
– It has one distinguished vertex called the root; 

– There is exactly one path from the root to each 
vertex; and 

– The level of a vertex is the length of the path to it 
from the root. 
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Trees

• Terminology: 

– if there is an edge from A to B, then A is the parent 
of B, and B is the child of A. 

– A leaf is a node with no children. 

– The height of a tree is the largest level number of 
any vertex. 
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Boolean Logic

• AND (conjunction) 

• OR (disjunction)    

• NOT (negation)     

• XOR (exclusive or) 

• Equality   : 1 if both of its operands have the same 
value.

• Implication  : 0 if its first operand is 1 and the 
second operand is 0; otherwise 1.



Proof techniques

• Construction

– Prove a “there exists” statement by finding the 
object that exists

• Contradiction

– Assume the opposite and find a contradiction

• Induction

– Show true for a base case and show that if the 
property holds for the value k, then it must also 
hold for the value k + 1



Proof by Construction - Example

• A graph is k-regular if all vertices has degree k

• Proof the following theorem:
– For all even numbers n > 2, there exists a 3-regular graph 

with n nodes.

• Strategy:
– Find such graph, G by providing formal description of it:

– V = {0, 1, ..., n-1} 

– E = {{i, i+1} | for 0 ≤ i ≤ n-2 }  {{n-1, 0}}  {{i, i + n/2} 

| 0 ≤ i ≤ n/2 -1 }}



Proof by Contradiction - Example

• A number is rational if it is a fraction m/n where m 

and n are integers (e.g. 2/3 is a rational number, 4/6 is 

irrational)

• Proof that √2 is irrational.

• Strategy:

– Assume that √2 is rational: √2 = m/n

– When m/n is rational, both m and n cannot be even 

numbers

– n√2 = m, 2n2 = m2 by squaring both sides

– so m2 is an even number and can be written as 2k, proceed!



Proof by induction - Example

• Theorem: A binary tree with n leaves has 2n – 1 
nodes

• Proving the theorem by induction:

– Basis: Compute number of nodes for a binary tree with 
one leave.

– Induction step:
• Assume the theorem is true for binary trees with number of 

leaves, n ≥ 1

• Compute the number of nodes for case of n + 1
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