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• Natural languages, computer languages, 
Mathematical languages

• A  language is a set of strings over an 
alphabet.

• Syntax of the language: certain properties 
that must be satisfied by strings. 

Strings  and Languages
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• A String over a set X is a finite sequence 
of elements from X.

• The set of elements are called alphabet 
of the language.

• Alphabet consists of a finite set of 
indivisible objects.

• The alphabet of a language is denoted ∑

Strings and Alphabets
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• String over an alphabet is a finite sequence of 
symbols from that alphabet, written next to 
one another and not separated by commas.
Example:

Let   = {0,1}

then strings over  are:

0 1 00 01 10 11 

1010

1110100111

111111 and etc.

Strings and Alphabets
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Let  be an alphabet. 

The set of strings over  (written as *) 

is defined recursively as follows:

• Basis :  *

• Recursive step: if w*  and a

Then

wa*

• Closure: w* if and only if it can be obtained from 
basis element  by a finite number of applications of 
recursive step.

String Recursive Definition



7

• If w is a string over , the length of w, 

written |w|

is the number of symbols that it contains.

Example:

|λ| = 0

|0| = 1

|1| = 1

|1010| = 4

|001101| = 6

Length of String
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• The set of strings, *, includes:

length 0: λ

length 1: a  b  c

length 2: aa ab ac  ba bb  bc ca  cb cc

length 3: aaa aab aac aba abb abc

aca acb acc  baa  bab bac

bba bbb bbc bca bcb bcc

caa cab  cac cba cbb cbc

cca ccb ccc
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• If we have string x of length m and string 
y of length n, the concatenation of x and 
y written xy is x1…xmy1…yn.

• Example: x = aba
y = bbbab

Then xy = ababbbab

yx = bbbababa

xyx = ababbbababa

Concatenation of String
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• If we have string x, the concatenation of 
x and x is self concatenation

• Example:

x0  = 

x1  = x = aba

x2  = xx = abaaba
x3  = xxx = abaabaaba

• xk = xx…x : self-concatenated string k times

Self Concatenation
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Let  u, v  * . 

The concatenation of u and v, written as uv, 

is a binary operation on * defined as follows:

• Basis :  length (v)=0, then v= and uv=u

• Recursive step:

Let v be a string with length(v)=n>0.

Then  v=wa, and uv=(uw)a

for some string  w with length n-1 and a

Definition of Concatenation
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Let  u=ab, v=ca, w=bb. 

Then the concatenation of:

uv=abca

vw=cabb

(uv)w=abcabb

u(vw)=abcabb

The result is independent of the order in which 

the operations are performed.
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• String z is a substring of w if z appears 
consecutively within w 

(z occurs inside of w)

Example:

w = abbaaababb

bba is a substring of w

abab is a substring of w

baba is NOT a substring of w

Substring
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Prefix for string v is a substring u where :

if x  =  ,     for     =  xuy

Then  = uy

(string v starts with substring u)

Example:

if  w = abbaaababb

a is a prefix of w

abbaais a prefix of w

bba is NOT a prefix of w

Prefix
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Suffix for string v is a substring u where :

if y  =  ,     for     =  xuy

Then  = xu

(string v ends with substring u)

Example:

if  w = abbaaababb

abb is a suffix of w

babb is a suffix of w

bab is NOT a suffix of w

Suffix
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The reverse of w, written wR or wr is the string 
obtained by writing w in the opposite order.

Example:

if  w = a wR =  a 

if  w = abb wR =  bba

if  w = aba wR =  aba

if  w = abbcd wR =  dcbba

Reverse
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Let u be a string in * 

The reverse of u, written as uR

is defined recursively as follows:

• Basis :  length(u)=0

Then u=  and R = 

• Recursive step: if w*  and a

if length(u)=n>0,

then u=wa   and uR = awR

for some string w with length n-1 and some a

Definition of Reverse
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• Two ways of specifying languages:

– an alphabet and the exhaustive list of all valid 
words

– an alphabet and a set of rules defining the 
acceptable words.

Finite Spec. of Languages
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PALINDROME language

• Definition of a new language 
PALINDROME over the alphabet :

 ba

  x reverse(x)such that  x string all and ,  PALINDROME  
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PALINDROME

• if we begin listing the elements in 
PALINDROME, we find

which if we concatenate 2 words in 
PALINDROME, sometimes it can produce a 
new words which is also in PALINDROME but 
sometimes it doesn’t. (Talk about it later)

 abbaaaaabbbbababaaaabbaaba  PALINDROME 
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Closure / star

• Closure of the alphabet (Σ ) is a language in 
which any string of letters from an alphabet  
Σ* is a word. For example,

– if , then

– if ,then

 x

 10

 xxxxxxL  4*

 0010001110010010* 
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Kleene star (cont.)

• We can think of the Kleene star as

an operation that makes an infinite language 
of strings of letter out of an alphabet.

Infinite language = infinitely many words, each 
of finite length.
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Definition of S*

• If S is a set of words, then by S* 

we mean the set of all finite strings formed by 
concatenating words from S,

where any word may be used as often as we 
like, and where the null string is also included.
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Example

• If S = {aa  b}, then

S* = {λ plus any word composed of 

factors of aa and b}

 = {λ plus all strings of a’s and b’s in 

which the a’s occur in even clumps}

 = {λ b aa bb aab baa bbb … }
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Example

• If S = {a  ab}, then

S* = {λ plus any word composed of factors of a and 
ab}

 = {λ plus all strings of a’s and b’s except those that 
start with b and those that contain a double b}

 = {λ a aa ab aaa aab aba … }
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Proof a word in the S*

• To prove that a certain word is in the closure 
language S*, we must show how it can be 
written as a concatenate of words from the 
base set S. 

• For example, 

– to show abaab is in S*, we can factor it as 
(ab)(a)(ab) and these are in S, therefore, 
their concatenation is in S*.

• If there is only one way to factor the string, we 
say that the factoring is unique.
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Example

• Consider the 2 languages

S = {a  b  ab}   and   T = {a  b  bb}

both S* and T* are languages of all strings of a’s 
and b’s since any string of a’s and b’s can be 
factored into syllables of either (a) or (b), both 
of which are in S and T.
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Positive closure +

• If we would like to refer to only the 
concatenation of some (not zero) strings from 
a set S, we use the notation + instead of *, for 
example:

if , 

then

 x

 xxxxxx
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S+

• if S is a set of strings not include  λ, then S+ is 
the language S* without the word λ.

• If S is a language that does contain λ, then S+ = 
S*.

• S+ can contain λ only when S contains the 
word  initially.
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S* and S**

Theorem 1:

for any set S of strings we have S* = S**

Proof:

every word in S** is made up of factors from S*. 
Every factor from S* is made up of factors from S. 
Therefore, every word in S** is made up of 
factors from S. Therefore, every word in S** is 
also a word in S*.

(is contained in or equal to)

*S**S 
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Regular Expressions

• we can describe a language definition looked 
similar to

 ... 3  2  1 nfor   xL n
1 

 ... 5  3  1 nfor   xL n
2 
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Regular Expressions

• we can guess the meaning of the 
languages, however it can be 
defined in a particular way that gets 
hard to guess. For example:

 ... 22  8  4  3 nfor   xL n
6 
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Another new method of
language definition

• We shall develop some new language-definition 
symbolism that will be much more precise than the …

For example: consider the language L4

We can define it with closure

Let  Then 

for shorthand, we could have written

 xxxxxxxxxx4 L

 xS *SL4 

 *xL4 
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Simple expression

• By using Kleene star, we can have a simple 
expression instead of …

• In order to distinguish between x from alphabet 
of x from Kleene star x*, we will use bold face x*
instead to make it different.





 4  3  2  1  0 n  somefor  

or x or x or xor x  * 432





nx

x
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Language(x*)

• We can also define L4 as 

Since x* is any string of x’s, L4 is then the set of 
all possible string of x’s of any length 
(including λ)

) *language( 4 xL
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Example

• Suppose we wish to describe the language L 
over the alphabet

where

“all words of the form one a follow by some number of 
b’s (maybe no b’s at all)”

we may write

 abbbbabbbabbabaL 

)(languageL ab*

 ba
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(ab)*

• Parentheses are not letters in the alphabet of 
this language, so they can be used to indicate 
factoring without accidentally changing the 
words.

• Like the powers in algebra

ab* means a(b*), not (ab)*

 abababor    ababor    abor        )*( ab
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Lang.(xx*) vs. Lang.(x+)

means ?

We start each word of L1 by writing down an x 
and then we follow it with some string of x’s 
(which may be no more x’s at all.)

We can use the + notation and write

*)(languageL1 xx

)(languageL1
 x
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L = (xx*)  and  L = (x+)

• The language L1 defined above can also be 
defined by any of these expressions:

xx*x+ xx*x* x*xx*

x+ x* x*x+ x*x*x*xx*

Remember

x* can always be λ
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Example

ab*a
is the set of all string of a’s and b’s that have at 
least two letters, that begin and end with a’s, 

and that 
have nothing but b’s inside 
(if anything at all).

 abbbbaabbbaabbaabaaa)*(Language aab
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Example

a*b*

contains all the strings of a’s and b’s in which all 
the a’s (if any) come before all b’s (if any)

notice that 

ba and aba are not in this Language

 aaaabbbabbaabaaabbabaabaLanguage *)*( ba
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a*b*  vs. (ab)*

    (ab)* can contain abab

but

a*b* can’t contain abab

*)(** abba 
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Regular Operations

• Let A and B be languages. We define the regular 
operations union, concatenation, and star as 
follows.

– Union : 

AB = {x|x  A or x  B}

– Concatenation : (simply no written)

A  B = {xy |x  A and y  B}

– Star : 

A* = {x1x2x3 … xk | k  0 and each xi  A}
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Union ()

xy where x and y are strings of 
characters from an alphabet

means

     “either x or y”

Also written as   x+y
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Example

• Consider the language T defined over the 
alphabet 

all the words in T begin with an a or a c and then are 
followed by some number of b’s. 

 cba

  cbbbbabbbbcbbbabbbcbbabbcbabcaT 

s)b' some then cor  a (

*))((

eitherlanguage

languageT



 bca
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Finite language L

• We can define any finite language by our new 
expression. 

• For example, 

consider a finite language L contains all the 
strings of a’s and b’s of length 3 exactly:

• The first letter can be either a or b. so do the 
2nd and 3rd letter.

 bbbbbababbaaabbabaaabaaaL 

L = language((ab) (ab) (ab))
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Finite language (cont.)

or we can simply write shortly as

L = language(ab)3

if we write (ab)*, it means the set of all 
possible strings of letters from the alphabet

including the null string λ

 ba
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Examples

• If we write

a(ab)*

we can describe all words that begin with the 
letter a.

• If we would like to describe all words that begin 
with an a and end with b, we can define by the 
expression

a(ab)*b = a(arbitrary string)b
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