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Finite Automata (FA)
• A simple class of machines with limited 

capabilities.

• good models for computers with an extremely 
limited amount of memory. 

• e.g., an automatic door : a computer with only 
a single bit of memory 
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State Diagram
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State Transition Table

INPUT SIGNAL

NEITHER FRONT REAR BOTH

STATE
CLOSED CLOSED OPEN CLOSED CLOSED

OPEN CLOSED OPEN OPEN OPEN
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Examples
• Elevator controller

– state : floor 

– input : signal received from the buttons.

• Dishwashers

• Electronic thermostats

• Digital watches

• Calculators
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Definition of fa

• A finite automaton (fa) is a collection of 3 things:

– A finite set of states, one of which is designated as the initial 
state, called the start state, and some (maybe none) of which 
are designated as final states.

– An alphabet of possible input letters.

– A finite set of transition rules that tell for each state and for 
each letter of the input alphabet which state to go to next.
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State Diagram 

– start state = q1

– final state = q2

– transitions = each arrows

– alphabet = each labels

• When this automaton receives an input string such as 1101, 
it processes that string and produce output (Accept or 
Reject).

q1

0

1

01

0,1

q2 q3
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Language of machine
• If A is the set of all strings that machine M accepts, 

we say that A is the language of machine M.

L(M) = A

• M recognizes A  (only 1 language)

• M accepts strings (several strings)

• If M accepts no strings, it still recognizes one 
language, empty language 
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Formal Definition

• A finite automaton is a 5-tuple 
(Q,,,q0,F) where

– Q is a finite set called the states,

–  is a finite set called the alphabet,

– : Q x  Q is the transition function,

– q0  Q is the start state, and

– F  Q is the set of accept states (final states)
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Example : 
Finite Automaton M1

• M1= (Q,,,q0,F) , where
– Q = {q1, q2, q3},

–  = {0,1},

–  is described as

– q1 is the start state, and

– F = {q2}.

0 1

q1 q1 q2

q2 q3 q2

q3 q2 q2

q1

0

1

01

0,1

q2 q3
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Example : 
Finite Automaton M1

What is the language of M1? 

q1

0

1

01

0,1

q2 q3
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Example : 
Finite Automaton M1

• A = {w | w contains at least one 1 and an even 
number of 0s follow that last 1}

L(M1) = A, or equivalently, M1 recognizes A

q1

0

1

01

0,1

q2 q3
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Example : 
Finite Automaton M2

• M2= (Q,,,q0 ,F) , where
– Q = 

–  = 

–  is described as

– is the start state, and

– F = {  }.

0 1

q1

q2

q1

0 1 1

q2

0
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Example : 
Finite Automaton M2

What is the language of M2? 

L(M2) = {w | w ends in a 1}

q1

0 1 1

q2

0
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Empty String 

• If the start state is also a final state, what string does 
it automatically accept ?

• L(M3) = { w | w is the empty string  or ends in a 0}

q1 q2

0

0

1
1
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Example : 
Finite Automaton M4

• M4= (Q,,,q0,F) , where
– Q = 

–  = 

–  is described as

– ? is the start state, and

– F = {        }.

a b

q1

q2

r1

r2

a

S

q1 r1

q2 r2

a

a a

ab

b

b
b

L(M4) = 
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Example : 
Finite Automaton M5

•  = {<reset>, 0, 1, 2}

• we treat <reset> as a single symbol.

• What does the M5 accept ?

2,<reset>

q1

q0 q2

0,<reset>
1 2

1

0

0

2

1,<reset>
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FA with Computer Language

• Computer Language
– Certain character strings are recognizable words. (DO, 

IF,END,…)

– Certain strings of words are recognizable commands.

– Certain set of commands become a program that can be 
compiled which means translated into machine 
commands.

• FA is used to determine whether the input 
commands (instruction) is valid or not 
corresponding to the structure rules.

• FA implements the rule with the transitions.
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Determinism
• So far, every step of a computation follows in a 

unique way from the preceding step.

• When the machine is in a given state and reads the 
next input symbol, we know what the next state will 
be – it is called deterministic computation

• Deterministic Finite Automata -- DFA
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Nondeterminism

• In a nondeterministic machine, several choices may exist 
for the next state at any point.

• Nondeterminism is a generalization of the determinism, 
so every deterministic finite automaton is automatically 
a nondeterministic finite automaton.

• Nondeterministic Finite Automata--NFA
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Example of DFA vs. NFA

q1

0

1

01

0,1

q2 q3

DFA:

q1 q2 q3 q4

0,1

1 0, 1

0,1

NFA:



23

Differences between 
DFA & NFA

• Every state of DFA always has exactly one 
exiting transition arrow for each symbol in the 
alphabet while the NFA can violate the rule.

• In a DFA, labels on the transition arrows are 
from the alphabet while NFA can have an 

arrow with the label .
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How does the NFA work?

• When we are at a state with multiple choices to proceed 

(including  symbol), the machine splits into multiple copies of 
itself and follow all the possibilities in parallel.

• Each copy of the machine takes one of possible ways to 
proceed and continuous as before. If there are subsequent 
choices, the machine splits again.

• If the next input symbol doesn’t appear on any of the arrows 
exiting the state occupied by a copy of the machine, that copy 
dies.

• If any one of these copies is in an accept state at the end of the 
input, the NFA accepts the input string.
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Tree of possibilities
• Think of a nondeterministic computation as a tree of 

possibilities

• The root of the tree corresponds to the start of the 
computation.

• Every branch point in the tree corresponds to a point 
in the computation at which the machine has 
multiple choices.

• The machine accepts if at least one of the 
computation branches ends in the an accept state.
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Tree of possibilities

start

accept or reject

Deterministic

computation

reject

accept

Nondeterministic

computation
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Example: 010110

q1 q2 q3 q4

0,1

1 0, 1

0,1

NFA: q1

q1

q2 q3q1

q1 q2 q3

q1 q4

q3

q4

Start
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Properites of NFA

• Every NFA can be converted into an equivalent DFA.

• Constructing NFAs is sometimes easier than directly 
construction DFAs.

• NFA may be much smaller than it DFA counterpart.

• NFA’s functioning may be easier to understand.

• Good introduction to nondeterminism in more 
powerful computational models because FA are 
especially easy to understand.
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Example: 
Converting NFA into DFA

q1 q2 q3 q4

0,1

1 0,1 0,1

NFA: recognizes language which contains 1 

in the third position from the end

q000 q100

q001

q010

q011q101 q111

q110

0

0 0

0

00001 1 1 1

1

1

1
1

Equivalent DFA:
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Formal definition of NFA

• A nondeterministic finite automaton is a 5-tuple 
(Q,,,q0,F) , where

– Q is a finite set of states,

–  is a finite alphabet,

–  : Q x  P(Q) is the transition function,

– q0 is the start state, and

– F  Q is the set of accept states.
Notation:

P(Q) is called power set of Q (a collection of all subsets of Q). 

and  = {}



31

Example: 
Formal definition of NFA

• Formal definition of N1 is (Q,,,q0,F) , where
– Q = {q1,q2,q3,q4}

–  = {0,1}

–  is given as

– q0 is the start state, and

– F = {q4}

q1 q2 q3 q4

0,1

1 0,1 0,1NFA N1: 

0 1 

q1 {q1} {q1,q2} 

q2 {q3}  {q3}

q3  {q4} 

q4 {q4} {q4} 
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Formal definition of 
regular expressions

• The new definition we have talked about is claimed 
as “Regular Expression”. 

• Languages which are able to be described by RE, are 
called “Regular Languages”.

– Not every languages are able to be described by RE.

– Regular languages may also be described by another fine 
definitions, besides the RE.
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Regular Expression

• The symbols that appear in RE are

– the letters of the alphabet 

– the symbol of null string  or λ

–parentheses ( )

– star operator *

– or + sign 
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Formal definition of 
regular expressions

Say that R is a regular expression if R is 

1. a for some a in the alphabet ,

2.  or λ,

3. ,

4. (R1R2), where R1 and R2 are regular 
expressions,

5. (R1  R2), where R1 and R2 are regular 
expressions, or

6. (R1*), where R1 is regular expression.
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Regular Expressions’
rules

• Rule 1: Every letter of  can be made into a 
regular expression

• Rule 2: If r1 and r2 are regular expressions, then 
so are

(i) (r1)

(ii) r1r2 or r1 r2

(iii) r1r2

(iv) r1*

• Rule 3: Nothing else is a regular expression.
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Recursive definition of 
regular set

• Basis :  , { } and {a}, for every  a
are regular sets over .

• Recursive step:  Assume X and Y are regular set over 
, then the sets:

XY,  XY  and  X*

are regular sets over 

• Closure: X is a regular set over  iff it can be obtained 
from basis elements by a finite number of applications 
of ecursive step.
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Parentheses

• We use parentheses ( ) as an option to eliminate 
the ambiguity when we apply * or + to the 
expressions. For example: 

if   r1 = aab then what is r1* ?

Is the r1* = aa+b* or (aa+b)* ? 

They are both REs but very different. 

Ans. the later choice. In this case we should put the ( ) 
when we substitute aab to r1*
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Null Language

•  or λ is the symbol of null string in regular 
expression.

•  is the symbol for “Null Language” 
• Don’t confuse!

– R = λ represents the language containing a single 
string, the empty string.  {λ}

– R =  represents the language that doesn’t 
contain any strings.
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Definitions

• If we let R be any regular expression,
– R = R : 

Adding the empty language to any other language will not 
change it.

– R   = R : 

Adding the empty string to any other language will not change 
it.

– R may not equal to R

e.g., if R = 0, the L(R) = {0} but L(R) ={0,}

– R  may not equal to R

e.g., if R = 0, the L(R) = {0} but L(R ) =
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Example

• Let consider the language defined by

(ab)*a(ab)*

What does it produce ?

Ans. 
The language which is the set of all words over the 
alphabet  = {a,b} that have an a in somewhere. 

Only words which are not in this language are those 

that have only b’s and the word 
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Union of two 
languages

• Those words which compose of only b’s are 
defined by the expression b*.

(b* also includes the null string )

• Therefore, the language of all strings over the 

alphabet  = {a,b} are

all strings = (all strings with an a)  (all string without 
an a)

(ab)* = (ab)*a (ab)*  b*
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Example

• How can we describe the language of all 
words that have at least 2 a’s ?

Ans

(ab)*a (ab)* a (ab)*

= (some beginning)(the first a)(some 
middle)(the second a)(some end)

where the arbitrary parts can have as many a’s (or 
b’s) as they want.
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Example

• Is there any other RE that can define the 
language with at least 2 a’s ?

Ans. Yes. For example:

b*ab*a(ab)*

=(some beginning of b’s (if any))(the first a)  
(some middle of b’s)(the second a) (some 
end)
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Equivalent 
expressions

(ab)*a (ab)*a (ab)* = b*ab*a(ab)*

Both expressions are equivalent because they both 
describe the same item. We could write

language ((ab)*a (ab)*a (ab)*) 

= language(b*ab*a(ab)*)
= all words with at least two a’s
= (ab)*ab*ab*
= b*a(ab)* ab*
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Example

• If we wanted all words with exactly 2 a’s, we could use 
the expression

b*ab*ab*

it can describes such words as

aab, baba, bbbabbbab, …

Question: Can it make the word aab ?

Ans : Yes, by having the first and second 

b* = λ
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Example

• How about the language with at least one a and at 
least one b ?

(ab)*a (ab)*b (ab)*

It can only produce words which an a precede ab. To 
produce words which have ab precede an a, we can 
describe by

(ab)*b(ab)*a (ab)*

Thus, the set of all words :

(ab)*a (ab)*b (ab)* (ab)*b (ab)*a (ab)*
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Example

• (ab)*a (ab)*b (ab)* can produce all words with at 
least one a and at least one b,

• However, it doesn’t contain the words of the forms 
some b’s followed by some a’s.

• These exceptions are all defined by bb*aa*

• Thus, we have all strings over  = {a,b}

(ab)*a (ab)*b (ab)* (ab)*b (ab)*a (ab)*

= (ab)*a (ab)*b (ab)* bb*aa* 
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(ab)*

(ab)*a (ab)*b (ab)* bb*aa* 

• generates all words which have both a and b in 
them somewhere. 

• Words which are not included in the above 
expression are words of all a’s, all b’s or  a*, b*

• Now, we have all words which can be generated 
above the alphabet 

(ab)* = (ab)*a (ab)*b (ab)* bb*aa*  a*  b*
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