
Finite Automata

Sazali Abd Manaf

Mohd Soperi Mohd Zahid

Theory of Computer Science –
SCJ 3203

Outline

• Deterministic Finite Automaton (DFA)

• Non-Deterministic Finite Automaton (NFA)

• Regular Expressions and Languages

3

Finite Automata (FA)
• A simple class of machines with limited

capabilities.

• good models for computers with an extremely
limited amount of memory.

• e.g., an automatic door : a computer with only
a single bit of memory

4

State Diagram

CLOSED OPEN

FRONT

NEITHER

FRONT

REAR

BOTH

BOTH

REAR

NEITHER

front

pad

rear

pad

automatic door

5

State Transition Table

INPUT SIGNAL

NEITHER FRONT REAR BOTH

STATE
CLOSED CLOSED OPEN CLOSED CLOSED

OPEN CLOSED OPEN OPEN OPEN

6

Examples
• Elevator controller

– state : floor

– input : signal received from the buttons.

• Dishwashers

• Electronic thermostats

• Digital watches

• Calculators

7

Definition of fa

• A finite automaton (fa) is a collection of 3 things:

– A finite set of states, one of which is designated as the initial
state, called the start state, and some (maybe none) of which
are designated as final states.

– An alphabet of possible input letters.

– A finite set of transition rules that tell for each state and for
each letter of the input alphabet which state to go to next.

8

State Diagram

– start state = q1

– final state = q2

– transitions = each arrows

– alphabet = each labels

• When this automaton receives an input string such as 1101,
it processes that string and produce output (Accept or
Reject).

q1

0

1

01

0,1

q2 q3

9

Language of machine
• If A is the set of all strings that machine M accepts,

we say that A is the language of machine M.

L(M) = A

• M recognizes A (only 1 language)

• M accepts strings (several strings)

• If M accepts no strings, it still recognizes one
language, empty language 

10

Formal Definition

• A finite automaton is a 5-tuple
(Q,,,q0,F) where

– Q is a finite set called the states,

–  is a finite set called the alphabet,

– : Q x  Q is the transition function,

– q0  Q is the start state, and

– F  Q is the set of accept states (final states)

11

Example :
Finite Automaton M1

• M1= (Q,,,q0,F) , where
– Q = {q1, q2, q3},

–  = {0,1},

–  is described as

– q1 is the start state, and

– F = {q2}.

0 1

q1 q1 q2

q2 q3 q2

q3 q2 q2

q1

0

1

01

0,1

q2 q3

12

Example :
Finite Automaton M1

What is the language of M1?

q1

0

1

01

0,1

q2 q3

13

Example :
Finite Automaton M1

• A = {w | w contains at least one 1 and an even
number of 0s follow that last 1}

L(M1) = A, or equivalently, M1 recognizes A

q1

0

1

01

0,1

q2 q3

14

Example :
Finite Automaton M2

• M2= (Q,,,q0 ,F) , where
– Q =

–  =

–  is described as

– is the start state, and

– F = { }.

0 1

q1

q2

q1

0 1 1

q2

0

15

Example :
Finite Automaton M2

What is the language of M2?

L(M2) = {w | w ends in a 1}

q1

0 1 1

q2

0

16

Empty String 

• If the start state is also a final state, what string does
it automatically accept ?

• L(M3) = { w | w is the empty string  or ends in a 0}

q1 q2

0

0

1
1

17

Example :
Finite Automaton M4

• M4= (Q,,,q0,F) , where
– Q =

–  =

–  is described as

– ? is the start state, and

– F = { }.

a b

q1

q2

r1

r2

a

S

q1 r1

q2 r2

a

a a

ab

b

b
b

L(M4) =

18

Example :
Finite Automaton M5

•  = {<reset>, 0, 1, 2}

• we treat <reset> as a single symbol.

• What does the M5 accept ?

2,<reset>

q1

q0 q2

0,<reset>
1 2

1

0

0

2

1,<reset>

19

FA with Computer Language

• Computer Language
– Certain character strings are recognizable words. (DO,

IF,END,…)

– Certain strings of words are recognizable commands.

– Certain set of commands become a program that can be
compiled which means translated into machine
commands.

• FA is used to determine whether the input
commands (instruction) is valid or not
corresponding to the structure rules.

• FA implements the rule with the transitions.

20

Determinism
• So far, every step of a computation follows in a

unique way from the preceding step.

• When the machine is in a given state and reads the
next input symbol, we know what the next state will
be – it is called deterministic computation

• Deterministic Finite Automata -- DFA

21

Nondeterminism

• In a nondeterministic machine, several choices may exist
for the next state at any point.

• Nondeterminism is a generalization of the determinism,
so every deterministic finite automaton is automatically
a nondeterministic finite automaton.

• Nondeterministic Finite Automata--NFA

22

Example of DFA vs. NFA

q1

0

1

01

0,1

q2 q3

DFA:

q1 q2 q3 q4

0,1

1 0, 1

0,1

NFA:

23

Differences between
DFA & NFA

• Every state of DFA always has exactly one
exiting transition arrow for each symbol in the
alphabet while the NFA can violate the rule.

• In a DFA, labels on the transition arrows are
from the alphabet while NFA can have an

arrow with the label .

24

How does the NFA work?

• When we are at a state with multiple choices to proceed

(including  symbol), the machine splits into multiple copies of
itself and follow all the possibilities in parallel.

• Each copy of the machine takes one of possible ways to
proceed and continuous as before. If there are subsequent
choices, the machine splits again.

• If the next input symbol doesn’t appear on any of the arrows
exiting the state occupied by a copy of the machine, that copy
dies.

• If any one of these copies is in an accept state at the end of the
input, the NFA accepts the input string.

25

Tree of possibilities
• Think of a nondeterministic computation as a tree of

possibilities

• The root of the tree corresponds to the start of the
computation.

• Every branch point in the tree corresponds to a point
in the computation at which the machine has
multiple choices.

• The machine accepts if at least one of the
computation branches ends in the an accept state.

26

Tree of possibilities

start

accept or reject

Deterministic

computation

reject

accept

Nondeterministic

computation

27

Example: 010110

q1 q2 q3 q4

0,1

1 0, 1

0,1

NFA: q1

q1

q2 q3q1

q1 q2 q3

q1 q4

q3

q4

Start

28

Properites of NFA

• Every NFA can be converted into an equivalent DFA.

• Constructing NFAs is sometimes easier than directly
construction DFAs.

• NFA may be much smaller than it DFA counterpart.

• NFA’s functioning may be easier to understand.

• Good introduction to nondeterminism in more
powerful computational models because FA are
especially easy to understand.

29

Example:
Converting NFA into DFA

q1 q2 q3 q4

0,1

1 0,1 0,1

NFA: recognizes language which contains 1

in the third position from the end

q000 q100

q001

q010

q011q101 q111

q110

0

0 0

0

00001 1 1 1

1

1

1
1

Equivalent DFA:

30

Formal definition of NFA

• A nondeterministic finite automaton is a 5-tuple
(Q,,,q0,F) , where

– Q is a finite set of states,

–  is a finite alphabet,

–  : Q x  P(Q) is the transition function,

– q0 is the start state, and

– F  Q is the set of accept states.
Notation:

P(Q) is called power set of Q (a collection of all subsets of Q).

and  = {}

31

Example:
Formal definition of NFA

• Formal definition of N1 is (Q,,,q0,F) , where
– Q = {q1,q2,q3,q4}

–  = {0,1}

–  is given as

– q0 is the start state, and

– F = {q4}

q1 q2 q3 q4

0,1

1 0,1 0,1NFA N1:

0 1 

q1 {q1} {q1,q2} 

q2 {q3}  {q3}

q3  {q4} 

q4 {q4} {q4} 

32

Formal definition of
regular expressions

• The new definition we have talked about is claimed
as “Regular Expression”.

• Languages which are able to be described by RE, are
called “Regular Languages”.

– Not every languages are able to be described by RE.

– Regular languages may also be described by another fine
definitions, besides the RE.

33

Regular Expression

• The symbols that appear in RE are

– the letters of the alphabet 

– the symbol of null string  or λ

–parentheses ()

– star operator *

– or + sign

34

Formal definition of
regular expressions

Say that R is a regular expression if R is

1. a for some a in the alphabet ,

2.  or λ,

3. ,

4. (R1R2), where R1 and R2 are regular
expressions,

5. (R1  R2), where R1 and R2 are regular
expressions, or

6. (R1*), where R1 is regular expression.

35

Regular Expressions’
rules

• Rule 1: Every letter of  can be made into a
regular expression

• Rule 2: If r1 and r2 are regular expressions, then
so are

(i) (r1)

(ii) r1r2 or r1 r2

(iii) r1r2

(iv) r1*

• Rule 3: Nothing else is a regular expression.

36

Recursive definition of
regular set

• Basis : , { } and {a}, for every a
are regular sets over .

• Recursive step: Assume X and Y are regular set over 
, then the sets:

XY, XY and X*

are regular sets over 

• Closure: X is a regular set over  iff it can be obtained
from basis elements by a finite number of applications
of ecursive step.

37

Parentheses

• We use parentheses () as an option to eliminate
the ambiguity when we apply * or + to the
expressions. For example:

if r1 = aab then what is r1* ?

Is the r1* = aa+b* or (aa+b)* ?

They are both REs but very different.

Ans. the later choice. In this case we should put the ()
when we substitute aab to r1*

38

Null Language

•  or λ is the symbol of null string in regular
expression.

•  is the symbol for “Null Language”
• Don’t confuse!

– R = λ represents the language containing a single
string, the empty string.  {λ}

– R =  represents the language that doesn’t
contain any strings.

39

Definitions

• If we let R be any regular expression,
– R = R :

Adding the empty language to any other language will not
change it.

– R   = R :

Adding the empty string to any other language will not change
it.

– R may not equal to R

e.g., if R = 0, the L(R) = {0} but L(R) ={0,}

– R  may not equal to R

e.g., if R = 0, the L(R) = {0} but L(R ) =

40

Example

• Let consider the language defined by

(ab)*a(ab)*

What does it produce ?

Ans.
The language which is the set of all words over the
alphabet  = {a,b} that have an a in somewhere.

Only words which are not in this language are those

that have only b’s and the word 

41

Union of two
languages

• Those words which compose of only b’s are
defined by the expression b*.

(b* also includes the null string )

• Therefore, the language of all strings over the

alphabet  = {a,b} are

all strings = (all strings with an a)  (all string without
an a)

(ab)* = (ab)*a (ab)*  b*

42

Example

• How can we describe the language of all
words that have at least 2 a’s ?

Ans

(ab)*a (ab)* a (ab)*

= (some beginning)(the first a)(some
middle)(the second a)(some end)

where the arbitrary parts can have as many a’s (or
b’s) as they want.

43

Example

• Is there any other RE that can define the
language with at least 2 a’s ?

Ans. Yes. For example:

b*ab*a(ab)*

=(some beginning of b’s (if any))(the first a)
(some middle of b’s)(the second a) (some
end)

44

Equivalent
expressions

(ab)*a (ab)*a (ab)* = b*ab*a(ab)*

Both expressions are equivalent because they both
describe the same item. We could write

language ((ab)*a (ab)*a (ab)*)

= language(b*ab*a(ab)*)
= all words with at least two a’s
= (ab)*ab*ab*
= b*a(ab)* ab*

45

Example

• If we wanted all words with exactly 2 a’s, we could use
the expression

b*ab*ab*

it can describes such words as

aab, baba, bbbabbbab, …

Question: Can it make the word aab ?

Ans : Yes, by having the first and second

b* = λ

46

Example

• How about the language with at least one a and at
least one b ?

(ab)*a (ab)*b (ab)*

It can only produce words which an a precede ab. To
produce words which have ab precede an a, we can
describe by

(ab)*b(ab)*a (ab)*

Thus, the set of all words :

(ab)*a (ab)*b (ab)* (ab)*b (ab)*a (ab)*

47

Example

• (ab)*a (ab)*b (ab)* can produce all words with at
least one a and at least one b,

• However, it doesn’t contain the words of the forms
some b’s followed by some a’s.

• These exceptions are all defined by bb*aa*

• Thus, we have all strings over  = {a,b}

(ab)*a (ab)*b (ab)* (ab)*b (ab)*a (ab)*

= (ab)*a (ab)*b (ab)* bb*aa*

48

(ab)*

(ab)*a (ab)*b (ab)* bb*aa*

• generates all words which have both a and b in
them somewhere.

• Words which are not included in the above
expression are words of all a’s, all b’s or  a*, b*

• Now, we have all words which can be generated
above the alphabet

(ab)* = (ab)*a (ab)*b (ab)* bb*aa*  a*  b*

49

References

