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| ©®©UIM Conversion, X

O To quantify how far a reaction has progressed

0 How many moles of C are formed for every mole A consumed

consider: aA+bB—o>cC+dD

The basis of calculation is always the limiting reactant

A+2B 6, 9p

d d d

4 lrreversible reaction: X, = 1.0 (complete conversion)

1 Reversible reaction: X, = Xequiiprium (€Quilibrium conversion)
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| ©UTM CONVERSION

X = moles of A reacted / consumed
moles of A fed

Batch system (X,t) Flow system (X,V/W)
X Nao - Ny X, = Fro —Fa
A=
N A Fao
N,(mol) =N,, — N, X F,(mol/s)=F,,—F, X
=Ny (d-X) =F,,(1- X)
N,oX= moles of A consumed FAoX= molar flow rate at which Ais
/ reacted consumed / reacted
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| ©UTM BATCH REACTOR

O For batch reactor , we are interested in determining how long to leave
the reactants in the reactor to achieve a certain conversion

dN ,
dt

From mole balance: r\V = From the conversion: N, =N ,, —N,,X

L This is how the Design Equation derived from mole balance equation in
terms of conversion

Differentiating with respect of time:

dI\lA —0— NAO d_X N, = O : constant with respect of time
dt dt
dX dX % dX
rvV=—N,, — -V =N,,— t=N, |——
A AQ dt » A AO dt - A0 OI_ rAV
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GAS FLOW SYSTEM

d The entering molar flow rate, F,, (mol/s)

Fao = Caols

mol mol dm’
s dm® s
C,, forgas system

C _ IDAO _ yAO IDO
A0 =
RT, RT,

CAo= entering concentration,
mol/dm3

Y o,= entering mole fraction of A
P,= entering total pressure, kPa
T,=entering temperature, K
P_o,= entering partial pressure

R=ideal gas constant =
8.314k.Pa.dm3/mol.K
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From mole balance;

V:FAO_FA

_rA

Design Equation:

V = FAO _(FAO B FAOX)

CSTR

From the conversion:

Fa = FAO — |:on

[©lecle]
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| ©UTM PFR

From mole balance: From the conversion:
dF
A =T, FA:FAO_FAOX
dVv

Design Equation:

Differentiating with respect of volume:

dF, _, . dX

FAo = O : constant with respect of volume

dav ~  *dv
dX dX rdX
rA:_FAOd_V =) _rA:FAOd_V =) V:FAO(_).‘_—rA
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PBR

From mole balance: From the conversion:
dF ,
A=r', Fp=Fao —FaX
dw

Design Equation:

Differentiating with respect of weight of catalyst:

dF, =0—FAod—X
dw dw
dX dX % dX
r' :—F _— » —I" — F — » W = F -
A A0 dW A A0 dW A0 6"—[' .
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DESIGN EQUATIONS

Design Equations for Isothermal Reactors

REACTOR DIFFERENETIAL | ALGEBRAIC INTEGRAL
FORM FORM FORM
dX X dX
NAoE:(_rA)V t:NAOJ—I’AV
V = Fao (X)
(_rA)Exit
Fro X _ (1) V=F de_x
AO dV - A AO . rA
SRS ax “dX
| oo W=Fo |
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| ©UIM REACTOR SIZING

L By sizing a chemical reactor we mean we're either determine the
reactor volume to achieve a given conversion or determine the conversion that
can be achieved in a given reactor type and size.

O Normally, the process / experimental data will be given (X, -r,)

PF

O Simpson's One-Third Rule is one of the more common numerical
methods.
 Other numerical methods (see Appendix A.4, pp 1013-1015):

(i) Trapezoidal Rule (2 data points)

(i) Simpson's Three-Eighth's Rule (4 data points)

(i) Five-Point Quadrature Formula (5 data points)
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Fao/-Ta

Reactor Sizing

Levenspiel Plot

Fao/-Ta
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REACTORS IN SERIES

Why?

d Sometimes 2 CSTR reactor volumes in series is less than the
volume of 1 CSTR to achieve the same conversion.

d Can model a PFR with a large number of CSTR in series.

O Inthe case of PFR, whether you place 2 PFR in series or have 1
PFR, the total reactor volume required to achieve the same
conversion is identical.

........
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REACTORS IN SERIES

X; = conversion achieved in

X=0 the PFR
Fao \\ Fa1
—@ Vi j X, = conversion achieved in
_—+——_ the PFR&CSTR
PFR [y
Faz
Vv
ko $ %
Valid only for NO side Fas
streams: CSTR
PFR X5 = total
_ conversion
0 = FAO — achieved by alll
3 reactors

_AOXl
A2 T FAO — _onz
_ons

A3 T FAO -




(1) CSTR in series:
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(ii1) CSTR + PFR in series:

X, X,
Fao Q Fa1 X2
) -
V1 \ A2
)
~— Y Xy
T as ~_
F,,X v |
vV A0 /N1 o,
1 — Tas
—r X, ~
Al dX
Vz = FAO j
X, M2
V FAO(XS XZ)
;=
— I3
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USIVEREIT TEINOLDG! MALAYSR

d The time necessary to process one reactor volume by
the volumetric rate entering the reactor

1 Also called the holding time or mean residence time

Vv
Uy
. volume
time = :
volume/time

d where vy, entrance volumetric rate
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SPACE VELOCITY (SV)

2 Reciprocal of the space time,
2 Two SV commonly used in industry:

GHSV Gas Hourly Space Velocity, ht
Vv, at STP (standard temp. and pressure)

LHSV Liquid Hourly Space Velocity, h-
Vv, at some reference temperature
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