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Conversion, X 

  To quantify how far a reaction has progressed 

  How many moles of C are formed for every mole A consumed 

Consider :  

The basis of calculation is always the limiting reactant 

  Irreversible reaction: Xmax = 1.0 (complete conversion) 

  Reversible reaction:  Xmax = Xequilibrium (equilibrium conversion) 
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CONVERSION 

Batch system (X,t) 

 

Flow system (X,V/W) 
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BATCH REACTOR 

 For batch reactor , we are interested in determining how long to leave 

the reactants in the reactor to achieve a certain conversion 

 

 From mole balance:                           From the conversion: 
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  This is how the Design Equation derived from mole balance equation in 

terms of conversion 
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Differentiating with respect of time: 

NA0 = 0 : constant with respect of time 
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GAS FLOW SYSTEM 

  The entering molar flow rate, FA0 (mol/s) 
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Ya0= entering mole fraction of A 

P0= entering total pressure, kPa 

T0=entering temperature, K 

Pa0= entering partial pressure 

R= ideal gas constant = 

8.314k.Pa.dm3/mol.K 

 



CSTR 
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PFR 

A
A r

dV

dF

From mole balance:                             

Design Equation: 

From the conversion:                             
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Differentiating with respect of volume: 

FA0 = 0 : constant with respect of volume 
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PBR 
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From mole balance:                             

Design Equation: 

From the conversion:                             
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Differentiating with respect of weight of catalyst: 
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DESIGN EQUATIONS 
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REACTOR SIZING 
  By sizing a chemical reactor we mean we're either determine the 

reactor volume to achieve a given conversion or determine the conversion that 

can be achieved in a given reactor type and size.  

 

  Normally, the process / experimental data will be given (X, -rA) 

 

PFR 

 
  Simpson's One-Third Rule is one of the more common numerical 

methods.  

  Other numerical methods (see Appendix A.4, pp 1013-1015): 

 (i) Trapezoidal Rule (2 data points)  

 (ii) Simpson's Three-Eighth's Rule (4 data points)  

 (iii) Five-Point Quadrature Formula (5 data points) 



Reactor Sizing 

PFR CSTR 

Levenspiel Plot 



REACTORS IN SERIES 

Why? 

 

   Sometimes 2 CSTR reactor volumes in series is less than the 

volume of 1 CSTR to achieve the same conversion. 

 

   Can model a PFR with a large number of CSTR in series. 

 

   In the case of PFR, whether you place 2 PFR in series or have 1 

PFR, the total reactor volume required to achieve the same 

conversion is identical. 

 



REACTORS IN SERIES 
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(i) CSTR in series: 

(ii) PFR in series: 
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(iii) CSTR + PFR in series: 
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SPACE TIME,  

   The time necessary to process one reactor volume by 

    the volumetric rate entering the reactor 

 

   Also called the holding time or mean residence time 

 

 

 

 

 

 

 

   where 0 is entrance volumetric rate 
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SPACE VELOCITY (SV) 
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V
SV

GHSV  Gas Hourly Space Velocity, h-1 

  v0 at STP (standard temp. and pressure) 

LHSV  Liquid Hourly Space Velocity, h-1 

  v0 at some reference temperature  

   Reciprocal of the space time,  

   Two SV commonly used in industry:  
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