

CHEMICAL REACTION ENGINEERING (SKF3223)

Chapter 6: Multiple Reaction

WAN NORHARYATI WAN SALLEH

hayati@petroleum.utm.my

RAFIZIANA MD. KASMANI

rafiziana@petroleum.utm.my

Types of multiple reaction

Parallel reaction

$$A + B \longrightarrow C + D$$
 $A + C \longrightarrow E$

Complex reactions

$$A \longrightarrow B \longrightarrow C$$

Series reaction

$$A \longrightarrow B + C$$

$$\mathsf{D} \longrightarrow \mathsf{E}$$

Independent reactions

OPENCOURSEWARE

D, desired product

$$A \rightarrow D \rightarrow U$$

U, undesired product

<u>Instantaneous</u> <u>Selectivity</u>

$$S_{D/U} = \frac{r_D}{r_U} = \frac{\text{rate of formation of D}}{\text{rate of formation U}}$$

$$\widetilde{S}_{D/U} = \frac{F_D}{F_U} = \frac{\text{exit molar flow rate of desired product}}{\text{exit molar flow rate of undesired product}}$$

$$\widetilde{S}_{D/U}$$
 (batch reactor) = $\frac{N_D}{N_U}$

Reaction Yield

Instantaneous Yield $Y_D = \frac{r_D}{-r_A}$

$$Y_D = \frac{r_D}{-r_A}$$

To maximize the selectivity of D with respect to U run at high concentration of A and use PFR

Reactor Selection

- Selectivity
 Yield
 Temperature control
 Safety
 Cost
- ☐ Different reactors and schemes for minimizing the unwanted product:
 - ☐ CSTR liquid phase reaction
 - ☐ PFR
 - □ Batch
 - □ Semibatch
 - ☐ Series of small CSTRs
 - ☐ CSTR with recycle exothermic reaction
 - ☐ Tubular reactor with recycle gas phase reaction

Parallel Reactions

$$A o D$$
 (desired) $r_D = k_D C_A^{\alpha 1}$ $A o U$ (undesired) $r_U = k_U C_A^{\alpha 2}$

Rate of disappearance of A:

$$-r_A = r_D + r_U$$
$$-r_A = k_D C_A^{\alpha 1} + k_U C_A^{\alpha 2}$$

Rate selectivity Parameter:

$$S_{D/U} = \frac{r_D}{r_U} = \frac{k_D C_A^{\alpha 1}}{k_U C_A^{\alpha 2}} = \frac{k_D}{k_U} C_A^{\alpha 1 - \alpha 2}$$

- If $\alpha_1 > \alpha_2$ use high concentration of A. Use PFR. If carried out in the gas phase – run it without inerts at high pressures If carried out in liquid phase – use of diluents should be kept to a minimum
- \Box If $\alpha_1 < \alpha_2$ use low concentration of A. Use CSTR and dilute feed stream

Series Reaction – reaction in PBR

$$A \rightarrow B \rightarrow C$$

Rate law: $-r_A = k_1 C_A$

- Mole balance : $\frac{dF_A}{dW} = r_A$
- Stoichiometry (dilute concentrations: $F_A = C_A v_0$ y_{A0} =0.001):
 - 4 Combine: $v_0 \frac{dC_A}{dW} = -k_1 C_A$ $\tau' = \frac{W}{v_0} = \frac{\rho_b V}{v_0} = \rho_b \tau$
- Integrating with $C_A = C_{A0}$ at W = 0: $C_A = C_{A0}e^{-k_1\tau}$

Series Reaction – reaction in PBR

$$A \rightarrow B \rightarrow C$$

Rate law: $r_{Bnet} = r_{Brxn1} + r_{Brxn2}$ Mole balance: $\frac{dF_B}{dW} = r_{Bnet}$

$$\dot{r_{Bnet}} = k_1 C_A - k_2 C_B$$

- Stoichiometry: $F_R = C_R v_0$
 - 4 Combine: $v_0 \frac{dC_B}{dW} = k_1 C_A k_2 C_B$

Substituting for C_A , dividing v_0 into W: $\frac{dC_B}{d\tau} + k_2 C_B = k_1 C_{A0} e^{-k_1 \tau}$

Integrating: $C_B = k_1 C_{A0} \frac{e^{-k_1 \tau} - e^{-k_2 \tau}}{k_2 - k_1}$

$$\tau'_{opt} = \frac{1}{k_1 - k_2} \ln \frac{k_1}{k_2}$$

$$\tau_{opt} = \frac{1}{k_1 - k_2} \ln \frac{k_1}{k_2}$$
 $W_{opt} = \frac{v_0}{k_1 - k_2} \ln \frac{k_1}{k_2}$

$$X_{opt} = \frac{C_{A0} - C_{A}}{C_{A0}} = 1 - e^{-k_1 \tau_{opt}}$$

$$X_{opt} = 1 - \exp \left[-\ln \left(\frac{k_1}{k_2} \right)^{k_1/(k_1 - k_2)} \right] = 1 - \left(\frac{k_1}{k_2} \right)^{k_1/(k_2 - k_1)}$$

Mole balance of C:
$$\frac{dC_C}{d\tau'} = r_C' = k_2 C_B = \frac{k_1 k_2 C_{A0}}{k_2 - k_1} [e^{-k_1 \tau'} - e^{-k_2 \tau'}]$$

$$C_C = \frac{C_{A0}}{k_2 - k_1} [k_2 [1 - e^{-k_1 \tau'}] - k_1 [1 - e^{-k_2 \tau'}]]$$

$$C_C = C_{A0} - C_A - C_B$$

Multiple Reactions

1 Number every reaction:

$$A + B \rightarrow 3C + D \tag{1}$$

$$A + 2C \rightarrow 3E \tag{2}$$

Rate Law for every reaction :

Reaction (1):
$$-r_{1A} = k_{1A}C_AC_B$$

Reaction (2):
$$-r_{2A} = k_{2A}C_AC_C^2$$

3

Relative Rates for every reaction:

Reaction (1):

$$\frac{r_{1A}}{-1} = \frac{r_{1B}}{-1} = \frac{r_{1C}}{3} = \frac{r_{1D}}{1}$$

$$r_{1B} = r_{1A} = -k_{1A}C_AC_B$$

$$r_{1C} = 3(-r_{1A}) = 3k_{1A}C_AC_B$$

$$r_{1D} = -r_{1A} = k_{1A}C_AC_B$$

Reaction (2):

$$\frac{r_{2A}}{-1} = \frac{r_{2c}}{-2} = \frac{r_{2E}}{3}$$

$$r_{2C} = \frac{-2}{-1}(r_{2A}) = -2k_{2A}C_AC_C^2$$

$$r_{2E} = \frac{3}{-1}(r_{2A}) = 3k_{2A}C_AC_C^2$$

Net Rates of Reaction:

$$r_A = r_{1A} + r_{2A} = -k_{1A}C_AC_B - k_{2A}C_AC_C^2$$

$$r_B = r_{1B} = -k_{1A}C_AC_B$$

$$r_C = r_{1C} + r_{2C} = 3k_{1A}C_AC_B - 2k_{2A}C_AC_C^2$$

$$r_D = r_{1D} = k_{1A} C_A C_B$$

$$r_E = r_{2E} = 3k_{2A}C_AC_C^2$$

Applications of Algorithm

- 1 Reactions follow 4 STEP
- Mole balance write mole balance on each species
- 3 Stoichiometry:

$$C_A = C_{T0} \frac{F_A}{F_T} y$$
 $C_B = C_{T0} \frac{F_B}{F_T} y$ $F_T = F_A + F_B + F_C + F_D$

- Pressure Drop: $\frac{dy}{dW} = -\frac{\alpha}{2y} \frac{F_T}{F_{T0}} \frac{T}{T_0} \qquad y = \frac{P}{P_0}$
- 5 Combine 6 SOLVE for the Profiles of F, C, and P for example

REFERENCES

Main Reference:

1. Fogler,H.S., "Elements of Chemical Reaction Engineering", 4th Edition,Prentice Hall, New Jersey, 2006.

Other References:

- Davis, M.E and Davis, R.J, "Fundamentals of Chemical Reaction Engineering", Mc-Graw-Hill, New York, 2003
- 2. Schmidt, L.D, "The Engineering of Chemical Reactions", Oxford, New York, 1998
- 3. Levenspiel, O., "Chemical Reaction Engineering", 3rd Edition, Wiley, New York, 1998
- 4. Smith, J., "Chemical Engineering Kinetics", 3rd Edition, McGraw-Hill, New York, 1981

