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Electromagnetic Fields (Maxwell’s Equations )

1. Modern electromagnetism is based on four fundamental relations 
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where is the electric field,

is the magnetic flux density, 

is the magnetic field, 

is the electric flux density or electric displacement,

is the current density,

v is the charge density.
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Electrostatic Fields 

1.   In the static case, all charges are permanently fixed in space. 

2.   If the charges move, they move at steady rate, so         and       are 

constant in time ( )
v J



3.   Thus, for electrostatics, Maxwell’s equations are: 
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(a) The electric field intensity over any closed surface in free space is 

equal to the total charge enclosed in the surface. 

(b)  The static electric fields are irrotational. 

(b)(a)



Coulomb’s law (Experimental law) (1) 

1. Coulomb’s law states that the force F between two point charges

Q1 and Q2 with distance R is:

a) Directly proportional to the product Q1Q2 of the charges.

2.  Formulation:
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b) Inversely proportional to the square of the distance R between them.
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where k is the proportionality constant depends on the choice of 

system.



Coulomb’s law (2) 

Example
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Determine force F between two point charges

Q1 and Q2 with distance R21
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Gauss’s  law (Experimental law) 

1. Electric field intensity,  is the force per unit charge when placed 

in an electric field.

E


n

o

n

a
R

Q

a
R

kQ

Q

F
E

ˆ
4

ˆ

2

2











2. Gauss’s law state that the electric flux passing through any closed 

surface is equal to the total charge enclosed by that surface.
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1. If more than one charge at a different location in a vacuum, the total electric 

field,      in the space external to the location of these charges is the vector 

summation of the electric field originating from each individual charge.

Electric  Intensity due  to Multiple  Point  Charges (1)
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at  (3, 0, 0) m. Determine the total electric intensity, at (0, 0, 5) m due to the both charges.
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Distribution  of  Charges (1)

1) Electric field due to point charges
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2) Electric field due to line charges

3) Electric field due to surface charges
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is the line charge density 

is the surface charge density
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Distribution of Charges (2)

4) To determine the charge, Q for each distributions:

Line charge
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Distribution of Charges (3)
Electric Field of a Line Charge
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Distribution of Charges (4)
Electric Field of a Line Charge
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The component z  is cancel out, the charge 

is contribute from location z and –z.
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Distribution of Charges (5)
Electric Field of a Sheet Charge
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The component radial, ρ is cancel out, 

because of all direction of component 
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Distribution of Charges (Example)

Electric Field of a Sheet Charge

Determine the force, F between the point charge, Q1= 50 μC at (0, 0, 5) m  

and the disk charge, Q2= 500 πμC with radial of ρ = 5 m and z = 0 m.
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Distribution of Charges (6)

Electric Field of a Ring Charge
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Insulators Conductors Semiconductors

Materials

1. The electromagnetic constitutive parameters of a material medium are

a) permittivity,      .       (Electrical study)

b) permeability,     .      (Magnetic study) 

c) conductivity,      .     (Electrical study)







Lossy 

Materials

Lossless 

Materials

Homogeneous

Non-homogeneous

Isotropic

Non-isotropic

Linear

Non-linear

Electrical Fields in  Materials (1)



1. Modern electromagnetism is based on four fundamental relations 

Electrical Fields in Materials (Maxwell’s Equations)
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For an isotropic, linear and non-dispersive medium, the relations are

2. In electrical study, we are concerned with only           and    

Ohm’s law
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Electrical Fields in Materials 

3.  A dielectric medium is linear if the magnitude of the induced 

polarization field is directly proportional to the magnitude of 

electric fields,       .

4.  A dielectric medium is isotropic if the polarization field,       and 

electric field,       are in the same direction.

5.  A dielectric medium is homogeneous if the ε, μ, and σ are constant 

throughout the medium.
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where         is called the electric susceptibility of the material.e
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Conducting Materials (Conductors)

1. Conductor is a material that easily conducts electrical current.

2. Current through a given area is the electric charge passing through

the area per unit time.

3. Current density,     is the current through a unit normal area.

1 m

1 m

Example

8e charges across a unit area in 1 second      

J
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4. In perfect dielectric, the conductivity, 0

0J
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5. But, in perfect conductor, the conductivity, 

0E
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6. Thus, perfect conductor cannot contain an electrostatic field within it. 

7. The conductor is called an equipotential body, because the electric

potential is the same at every point in the conductor. 

Conducting Materials (Conductors)
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Conducting Materials (Conductors)

8. In general, conductor has resistivity,        because 
c

Conductor Conductivity, σ (S/m)

• Silver

• Copper

• Gold

• Aluminium

7102.6 
7108.5 
7101.4 
7105.3 

9. The relationship between conductivity,      and resistivity,  c


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Conducting Materials (Conductors)











S

v

SdE

ldE

I

V
R







For non-perfect conductor, the , the resistance, R is occurred in the 

conductor 
0E





Dielectric Materials (Insulators)

1. There are two type of dielectric materials. 

a) Lossless materials

b) Lossy materials

2. In general, the relative permittivity,      of lossy materials consist of real

and imaginary parts. 




 jrr 

4. For lossless materials, the 

r

3. The real part, is related to the ability of the material to store electrical

energy and the imaginary part, is the energy-dissipating component.
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5. The lossy medium can be polarized by an external electric field, E

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Dielectric Materials (Insulators)
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8. The electric flux density,     in a lossy medium is written asD


PED o


  Polarization vector

EP eo


where                    and        is called the electric susceptibility of the 

material.
e








jr

er



1



9. The electric susceptibility,      is the maximum electric field that a    

dielectric can tolerate or withstand without electrical breakdown. 
e

Dielectric Materials (Insulators)

10. Dielectric breakdown occurred when a dielectric becomes conducting.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Frequency (GHz)


,

r


,,

r

Polyvinyl Alcohol (PVA)

Lossless Materials (PVA) Lossy Materials (Water)

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

Frequency (GHz)

Water (25 
o
C)

R
e

la
ti
v
e

 P
e

rm
it
ti
v
it
y
, 

r


r

 ,
 


r

 ,,
 

Example

26



BOUNDARY CONDITIONS 
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BOUNDARY CONDITIONS (1)

E


1) Tangential is always continuous.

21 tt EE 

2) Tangential is continuous.H

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H
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sJ
Tangential is discontinuous by an amount corresponding to 

any surface current,         which may flow.
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3) Normal is always continuous.B

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BOUNDARY CONDITIONS (2)
4) Normal is continuous.D



D


sρ
Normal is discontinuous by an amount corresponding to any 

surface charge,       which may be present. 
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For static fields,
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Summing for each segment, then we have the first boundary condition:
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21 TT EE 

BOUNDARY CONDITIONS 

Proof (3)
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BOUNDARY CONDITIONS 

Proof (4)

The Gauss’s Law,
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Thus,

The pillbox is short enough, so the flux passes through the side is negligible.

Which sums to

  encNN QSDD  21

Thus, it leads to the second boundary condition
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32

Two extensive homogeneous isotropic dielectric meet on plane z=0. For z > 0,    

and z < 0,            . An uniform electric field,                                                exists for   mVkˆ3ˆ2ˆ51 zyx aaaE 


41 r

32 r z ≥ 0

Find

a)  E2 for z ≤ 0 

b)  The angles E1 and E2 make with the interface

c)  The energy densities in both dielectrics

d)  The energy within a cube of side 2 m centered at (3, 4, -5) 

Questions



1. The amount of charge, Q that accumulates as a function of potential   

difference, V is called the capacitance, C.

Capacitance (1)

V

Q
C 

2. The unit capacitance is the farad (F) or coulomb per volt.

3. Capacitor can be created using two conducting bodies separated

by an dielectric (insulator) medium.
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Coaxial 

capacitor

Parallel-plate 

capacitor

4. The three general form of capacitors are

a) Parallel-plate capacitor

b) Coaxial capacitor

c) Spherical capacitor
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Spherical 

capacitor
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