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Electromagnetic Fields (maxwelrs Equations )

1. Modern electromagnetism is based on four fundamental relations

Gauss’s Law Gauss’s Law
— — \ = = \
V-D=p, V-B=0
> Electric > Magnetic
Faraday’s Law Phenomenon  Ampere’s Law Phenomenon
- - 0B - - = D
VxE=——+ | VxH=J+—
ot ot
where E is the electric field, H is the magnetic field,

D is the electric flux density or electric displacement,

—

is the magnetic flux density, J is the current density,

well

ov is the charge density.
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1. In the static case, all charges are permanently fixed in space.

Electrostatic Fields

2. If the charges move, they move at steady rate, so 2, and J are
constant in time ( dB8/dt=0)

3. Thus, for electrostatics, Maxwell’s equations are:

= =P, S
V'E:g_ VxE=0

(@) (b)

(a) The electric field intensity over any closed surface in free space is
equal to the total charge enclosed in the surface.

(b) The static electric fields are irrotational.
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Coulomb’s law (Experimental law) (1)

1. Coulomb’s law states that the force F between two point charges
Q1 and Q2 with distance R is:

a) Directly proportional to the product Q1Q2 of the charges.
F < QQ,

b) Inversely proportional to the square of the distance R between them.

2. Formulation:

where k is the proportionality constant depends on the choice of
system.
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Coulomb’s law (2)

z e
Q1
@ 0,1,2)m
HC )Y
Q2
(2,0,0) m
Step 2
-~ k R
F= %zQZ 21
21
kQQ, (—2)2+ 9+22)
; N
(3m) 3
k = L
Are

Determine force F between two point charges
Q1 and Q2 with distance R21

Step 1
o o . _ R
R,, = Xdx+ydy+7dz dy = R
=(0-2)8+(1-0)y+(2-0)z Ra
Y~ a —2X+ Y+ 22
=—-2X+ Y +21 =
3
Step 3
= _(20x10°C)- 300><106c)(—2f<+ g+ 22)
4rs,(3m)’ 3

:6(22_

= 4%-2

W (<>

—22) N
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Gauss’s law (Experimental law)

—

1. Electric field intensity, E is the force per unit charge when placed
In an electric field.

my
I

=~ T
|y Ol
Q)5

2. Gauss’s law state that the electric flux passing through any closed
surface is equal to the total charge enclosed by that surface.

Q=¢ D-dS
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due to Multiple Point Charges (1)

1. If more than one charge at a different location in a vacuum, the total electric
field, E in the space external to the location of these charges is the vector
summation of the electric field originating from each individual charge.

E,+E,+E,+...+E,

>E,

E

ITIl

Example:
There has a point charge Q, =0.354C at (0, 4, 0) m and another point charge Q, =-0.55,C
at (3, 0, 0) m. Determine the total electric intensity, E at (0, 0, 5) m due to the both charges.

7} R, =—4y+52 R, = —3%+52
El\/ E, 1 2

\ E

—6 A I —6 ~ A
3 - 20.35><10 —4y+52 vm? E :—0.55><10 -3y +52 Vi
Aze (41) | Ja1 4re,(34) | 34

2, E—E +E,
(3,0,0)

=749%-48.09-64.97
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Distribution of Charges (1)

1) Electric field due to point charges (Spherical Coordinates)
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2) Electric field due to line charges (Cylindrical Coordinates) |
== || 3
—_ \’\’ —_—
E = 2'0' a, —=_E
E¥ -
///pl \y
P, is the line charge density (C/m) * e
'

—oco

3) Electric field due to surface charges (Cylindrical Coordinates)

|E
E=s 4
2¢&,
Ps is the surface charge density (C/mz) L E




Distribution of Charges (2)

4) To determine the charge, Q for each distributions:

Line charge Surface charge
dQ = p,dl dQ = p,dS
Q= pl Q= p,ds
| S
dQ=p, dz dQ = p, pdg dQ=p, pdgdz  dQ=p,pdpdg

Volume charge (Special cases)

dQ=p,dv
Q= p,dv
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Distribution of Charges (3)
Electric Field of a Line Charge

E =dE, +dE, +...+dE,
Line charge

dE - 1
dQ: /__ ;EZ E:4 Rz(dQ1a1+szaz+ .+dQ,a )

\\ dql - 47zg R? & ZdQ”é"

dQ:

RA ~mep]iQa oo - -q,

dQ:s

7 Summation = Integration, if dQ — 0
/

/ Z:I




Distribution of Charges (4)

Electric Field of a Line Charge

e pp+(z-1')2
4re R? /,02+ZZ
= p, 0z [pr(Z—Z')fJ
47[50(\/p2+22)2 Jo©+27°

The component z is cancel out, the charge
is contribute from location z and —z.

E:Iw P, 4z 2[ PP J
_0047rgo(\/p2+22) Vo2t
:ro P pdz -
- 47r80(p2 +22)3/2

- plp Z [3
471-80 p2 /p2+22
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Distribution of Charges (5)
Electric Field of a Sheet Charge

dE_ dQ —p,b+22
4re R* /pZ 4 72

ps pdpdg [—p/'>+ 22

472'80(\//)2 + 22)2 Vo +17°

J

The component radial, p is cancel out,
because of all direction of component

radial p around z

= _ (¥ (* _PspZdpdd
E:.[o jo Ars (,02+22)3/2

D




OPENCOURSEWARE Distribution of Charges (Example)
Electric Field of a Sheet Charge

Determine the force, F between the point charge, Q1= 50 uC at (0, 0, 5) m
and the disk charge, Q2= 500 ruC with radial of p=5m and z=0m.

Z Step 1 ~Q, 5007x10°C
A P = — -
A 7Z'p
~ 5007x10°C
7z(5m)2
=0.2x107" C/m?
Step 2
= 4 — — pp +52
| Step 3
JE—__QdQ, [-pp+52 o[ (50x10°)0.2x10 4)?2pdpd¢ ;
4re,(p? +25)| \[p? +25 v 47&90(,02 + 25)3
dod R 2 =16.562 Newton
- lesf P ¢/2 (—/Op+52)
Are |p° + 25

Innovative.Entrepreneunal.Global




Distribution of Charges (6)

Electric Field of a Ring Charge

y4 dE_ dQ —,0,[)+Zf
A Aze,R*\ [ p?+ 22
dE ___ p.pdd [—pf)+22J
\ 47r50(\/,02+22)2 Npi+7°
V4
'p\ \\ The component radial, p is cancel out,

>y because of all direction of component
y radial p around z

X dQ=p, dl
. 27 o pzdo R
=/ pdg E:jo I 2 V2 -
47zgo(p +Z)
P PZL

A

3/2

280(,02 s 22)
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Insulators Conductors Semiconductors
Lossy Lossless
Materials Materials
Homogeneous Isotropic Linear
Non-homogeneous Non-isotropic || Non-linear

1. The electromagnetic constitutive parameters of a material medium are
a) permittivity, & . (Electrical study)
b) permeability, #£. (Magnetic study)

c) conductivity, O . (Electrical study)



Electrical Fields in Materials (Maxwell’s Equations)

1. Modern electromagnetism is based on four fundamental relations

—

V-D=p, V-B=0
B TxH=J+P
ot ot

For an isotropic, linear and non-dispersive medium, the relations are

2. In electrical study, we are concerned withonly & and o
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Electrical Fields in Materials

3. Adielectric medium is linear if the magnitude of the induced
polarization field is directly proportional to the magnitude of
electric fields, E

P=¢,y.E
where Ze is called the electric susceptibility of the material.

4. A dielectric medium is isotropic if the polarization field, P and
electric field, E arein the same direction.

5. A dielectric medium is homogeneous if the ¢, y, and o are constant
throughout the medium.

19
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Conducting Materials (Conductors)

1. Conductor is a material that easily conducts electrical current.

2. Current through a given areais the electric charge passing through
the area per unit time.

—

3. Current density, J is the current through a unit normal area.

Example
8e charges across a unit area in 1 second

1m

J=8e Am™ ;O_Q_O
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Conducting Materials (Conductors)

4. In perfect dielectric, the conductivity, o=0

J=0

5. But, in perfect conductor, the conductivity, 0 =%

E=0

6. Thus, perfect conductor cannot contain an electrostatic field within it.

7. The conductor is called an equipotential body, because the electric

potential is the same at every point in the conductor.

21



' Conducting Materials (Conductors)

8. In general, conductor has resistivity, £ because

O #* 0

Conductor Conductivity, ¢ (S/m)
* Silver 6.2x107
- Copper 5.8x10’
- Gold 4.1x10’
e Aluminium 3.5%10"

9. The relationship between conductivity, @ and resistivity, Pc
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Conducting Materials (Conductors)
y

+

I._
II
V

For non-perfect conductor, the E =0 , theresistance, R is occurred in the
conductor

R=~

jvé-df
_jsaé-d§
D
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Dielectric Materials (Insulators)

1. There are two type of dielectric materials.
a) Lossless materials
b) Lossy materials
2. In general, the relative permittivity, &, of lossy materials consist of real

and imaginary parts.

3. The real part, ¢: is related to the ability of the material to store electrical
energy and the imaginary part, o/® is the energy-dissipating component.

4. For lossless materials, the /@ =0
5. The lossy medium can be polarized by an external electric field, E

[@lecle]
]
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Dielectric Materials (Insulators)

8. The electric flux density, Din a lossy medium is written as

— — —

D=¢ E+P

(0)

<« Polarization vector

where P=¢y,E and Z. is called the electric susceptibility of the

material.
Example
. Water
T +
e T =
® e
. O
T N
+ T -
T T
e .
@) @)
- N,
— T
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Dielectric Materials (Insulators)

9. The electric susceptibility, Xe is the maximum electric field that a
dielectric can tolerate or withstand without electrical breakdown.

10. Dielectric breakdown occurred when a dielectric becomes conducting.

Example
Lossless Materials (PVA) Lossy Materials (\Water)
- | | ‘ P‘olyvinyI‘AIcoho‘I (PVAS | | ?
16 M—/\/—/—’/\ 70+
14+ 1 @ el
>
L2 S o
il g Water (25 °C)
o 4or
0.8f o 1
(0] &
2 o r
0.6r ..ES.
T
0.4f ad
0.2r gu 4 10
AWWW
00 ‘2 21 é é lb 1‘2 £4 1‘6 1‘8 20 O0 ‘2 1‘1 6 E; £O £2 £4 £6 1‘8 20
Frequency (GHz) Frequency (GHz)
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BOUNDARY CONDITIONS

3 &

= Two Extensive Homogeneous Isotropic Dielectric

Enl
O\

n2

&

Boundary (z = 0)
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BOUNDARY CONDITIONS (1)

1) Tangential E is always continuous.

Etl - Et2

2) Tangential H is continuous.
Hy, =H,,

—

Tangential H is discontinuous by an amount corresponding to
any surface current, Js which may flow.

Htl - th +js

—

3) Normal B is always continuous.

Bnl - Bn2
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BOUNDARY CONDITIONS (2)

4) Normal D is continuous.

Dnl - Dn2

Normal D is discontinuous by an amount corresponding to any
surface charge, p_which may be present.

D ni— Dn2 +ps

E2M202)

Medium 1 (g1 p101)

29



BOUNDARY CONDITIONS
| Proof (3)

For static fields,

§E-df=o

Integrate in the loop clockwise starting from a,

Medium 2

: T i

E-dl +[E-dl +[E-dl =

O"—'O
l

O'—.Q_

Q.Q—’m

Evaluate each segment,

d 0
[E-di'= [Epa, -dlay =-E Aw
c Aw
c 0 —-Ah/2 a 0 Ahj2
[E-di = [Eya,-diay+ [Eya,-da,  [Edl= [Epaydiay+ [Eyay-da,
b Ah/2 0 d -Ah/2 0
Ah
:_(EN1+ ENZ)A?h (EN1+EN2) 5

Summing for each segment, then we have the first boundary condition:
E.,AW-E.,Aw=0

ET1 — ET 2
Innovative.Entrepreneurial.Global
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|

st Medium 1 Proof (4)
4 AS(ay) The Gauss’s Law,
AR2 -
A ar & A2 § D-dS= Qenc
0, A8(-a,) Thus,
D-dS=|D-dS+ |D-dS+ |D-dS
Medium 2 § t(;“p botjt-om siJ(;e

The pillbox is short enough, so the flux passes through the side is negligible.

If)-d§ :fDNlaN .dSa, = D,,AS

top

jﬁ-d§:jDN2aN .dS(-a, )=—D,,AS
bottom

Which sums to
(DNl - DNZ)AS a Qenc

Thus, it leads to the second boundary condition

OOE

ocw.utm.my
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Questions

Two extensive homogeneous isotropic dielectric meet on plane z=0. Forz>0, ¢, =4
and z < 0,¢_, =3 . An uniform electric field, E, =54, —2a,+34a, kV/m exists for z2 0
Find

a) E2forz<0

b) The angles E1 and E2 make with the interface

c) The energy densities in both dielectrics

d) The energy within a cube of side 2 m centered at (3, 4, -5)

Innovative.Entrepreneurial.Global
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Capacitance (1)

1. The amount of charge, Q that accumulates as a function of potential
difference, V is called the capacitance, C.

c_Q

V

2. The unit capacitance is the farad (F) or coulomb per volt.

3. Capacitor can be created using two conducting bodies separated
by an dielectric (insulator) medium.

33
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Capacitance (2)

4. The three general form of capacitors are

a) Parallel-plate capacitor

b) Coaxial capacitor C — Q
V
c) Spherical capacitor 2 el
~In(b/a)

[

alll=

Parallel-plate Coaxial
capacitor capacitor

23
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Capacitance (3)

Spherical
capacitor

c_Q
V
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