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Maxwell’s Equations

1. Modern electromagnetism is based on four fundamental relations

Gauss’s Law Gauss’s Law

V-D=p, V-B=0

Faraday’s Law Ampere’s Law

= = B - - - oD

VXEZ—a— VxH:J+a_
ot ot

where E s the electric field,

H is the magnetic field,
D is the electric flux density or electric displacement,
B is the magnetic flux density,

J isthe current density,

ov is the charge density.

From Gauss’s law, the Coulomb’s law has been derived.
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Flux Density (1)

1. Electric flux line is an imaginary path or line drawn in a direction at
any point (Direction of the electric field, E at that point).

2. Theelectric flux, ¥ is defined as

W:.L D-dS

—

where D is the electric flux density or so-called electric displacement.



F

lux Density (2)

3. The electric flux density, D is defined as

D=¢E

o

4. The flux show the electric field intensity, E is dependent on the
medium in which the charge is placed.

5. Gauss’s law state that the electric flux, ¥ passing through any
closed surface is equal to the total charge, Q enclosed by that
surface.

Q=§S D-dS

or
Q=|V-D dv -
v TR
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Del Operator (1)

1. The del operator, V is the vector differential operator.

2. In Cartesian coordinates

§=®k+@9+®2 Gradient{Operator.
X oy 0z
vV =—>2+8—V§/+6—V2
OX oy Z
e —
§=®k+a()§/+i)2
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Del Operator (2)

3. In cylindrical coordinates

§:i)b+ii)¢§+i)z Gradient{Operator.
op P OP oz

op P OP oz

v-tapl), 1), o),

Yo,

op L OP oz

—

V-A=

1 OpA, N 1 OA, +aAZ

L Op P OP oz
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Del Operator (3)

4. In spherical coordinates

9=, 2205, 1o
r o6 rsiné@ 8¢

VV = 6\/ 16_\/@4_ 1 oV 2
ar r 00 rsiné@ o¢

Operator.

) .
T = 126('“ Joo L a6in0 ), 1 o)
r or rsiné oo rsin@d og¢
S A 12('a(r2A,)I¢+ 1 osindA,) 5 1 oA 4
r or rsiné o6 rsinéd o¢
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Del Operator (Gradient Operator) (2)

The operator has no physical meaning by it self.

The operator attains a physical meaning once it operates on a scalar
physical quantity.

The result of the operation is a vector whose magnitude is equal to the
maximum rate of change of the physical quantity per unit distance.

The direction result of the operation is along the direction of maximum
Increase.
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Del Operator (Gradient Operator) (3)

9. The operator is useful in defining
a) Gradient of a scalar V

VvV Electric field intensity, Potential
b) Divergence of a vector A

- —

VA Electric flux, Magnetic flux

c) Curl of a vector A

VxA Magnetic field intensity, Current

d) Laplacian of a scalar V

—

&Y, Stored energy
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Mathematical Theorem

1. There are two important mathematical theorem

a) Gauss’s Theorem (Divergence Theorem)
b) Stoke’s Theorem (Curl)

2. The divergence theorem states that the total outward flux of a vector field
A\ through the closed surface S is the same as the volume integral of the
divergence A

§ AdS=[V-Adv

—_

3. The Stoke’s theorem states that the circulation of a vector field A
around a closed path L is equal to the surface integral of the curl of A
over the open surface S bounded by L.

§L A-dl = L (§><A)d§

A and VxA arecontinuousonsS
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I Gauss’s Theorem (Divergence Theorem) (1)
y
Consider an element of volume dv = dxdydz in a
vector field, F

For surface S1

dS, = xdydz

and the vector field, E though the surface S:

—

F.dS, = (F,%+F,y+F,2)-2dydz
= F,dydz

X

. For surface S2
Combining these two results

dS, = —Xdydz

F.dS,+F-dS, =F dydz—F/dydz

and the vector field, E though the surface S2
= ai(FX dydz)dx : J
X

F-dS, = (F/%+F/y+F/2)--&dydz
J‘ﬁ .dS =J'[88ixjdxdydz =—F,dydz
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| Gauss’s Theorem (Divergence Theorem) (2)

Similarly, for surface S3 and S4

jF .dS = j( ]dxdydz
S;+S,

<<

and for surface Ss and Ss

JF-ds= j(

Sg+Sg

]dxdydz

These three results together cover the total surface:

—7Z
. E oF
| F-dS:jaX+ v, 95 dxdydz
Si+...4+Sg v 8X a az
:J‘Vlfdv
. (cc) WG
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Stoke’s Theorem (1)

let F, ,F,, F, and F, denote the vector field at A, B, C and D, respectively.

The vector field along AB

—

F - dx=(F,%+F, §+F,,2)-Rdx
=F_ dx

The vector field along BC

—

F, - ydx =(F, %+ F, 9+ F,,2)- g dy

= |:by dy
The vector field along DA The vector field along CD
F, -y dx :(Fdxy(Jr Fy J+ Fdzz)._ydy F, - —Rdx =(FCX>2 +F, ¥+ Fczi)-— X dx

=—de dy = _ch dx



| —"
SR
— e
A D
7 A dy
""" ix C
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Stoke’s Theorem (2)

The total vector field for x-axis (AB+CD)

[F-dl' =F, dx—F, dx
(AB+CD)
— _(ch o |:ax)dx

=— oF, dxdy
oy

The total vector field for y-axis (BC+DA)
_[If -dl = F,, dy—F,, dy

(BC+DA)
= (Fby o de)dy

_9 dxd
X y

Adding these two results together for the complete rectangular (ABCD)

(ABCD)

. - [oF
j F-dIz(—y—aFX]dxdy
ox oy



' OPENCOURSEWARE Review back the cross product

. X G =2
. ds=nds ﬁxﬁ:i (LW O
n oX oy 0z
F, F, F,
ALaFZ aFy] A(aFZ aFXj A(aFy aFXJ
= X ——= |-y - + 2 -
oy oz oX o0z oX oy
dl
C
S oF
_[ F-dlz[ y—alzxjdxdy
(ABCD) OX ay
:(ﬁxlf)-idxdy

Summing for all such elements over the surface

!?xlf-d§:2[ jlf-dfj

(ABCD)

=§|f.d|"
(©

The vector field on the boundary lines between adjacent rectangular elements
will cancel out, except on the boundary curve, C of the surface, S

Innovative.Entrepreneurial.Global




» - Electric Potential (Potential Energy)

1. Potential energy is a energy required by charge particle to move in a
region against an electric field, E .

!

- — +
- B +
- 7T T T =
N ’
A { I 7 ¥
- T=— +

2. This is because work has to be done to overcome the force, F due to the
electric field, E (negative sign).

3. The work done in displacing the charge by dl is

dwW =—F -dI
4. The work done in displacing from A to B
B— —
W = —J-A F.dl @00

Innovative.Entrepreneurial.Global



- e Electric Potential (Work)

5. From Coulomb’s law, the force on charge, Q is F =QE , so the work

done, W Ma
dW = —F -dI

= —QE.-dl

6. Thus, the total work done, W from A to B
B — —
W =—QjA E-dl

7. Potential at any point is the potential difference between that point and
a chosen point (reference point) at which the potential is zero.

8. The potential between two points represents potential energy (work done)
required to move a unit charge between the two points (points A and B).

Innovative.Entrepreneurial.Global



- === Electric Potential (Potential Difference)

9. Vs is called potential difference between points A and B.

10. Potential difference,vAB Is independent of the path between A and B.

11. Potential difference, Vas is measured in joules per coulomb, commonly
referred to as volts (V).

12. Potential difference between points A and B can be written as

VAB = VB _VA

where Ve and Va arethe absolute potentials at B and A,
respectively.

Innovative.Entrepreneurial.Global



Electric Potential (Conservation of Energy)

1. Potential difference is independent of the path between A and B.

VAB:_VBA
- — +
B,
) dl .~ <7
\ 7 |
3 N V s/ +
\\ AB // I
- AR ~____- I+
~ /
- + \\\ / +
\\\ V //
\\\\\\ B A’/
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- == Electric Potential (Conservation of Energy)

2. Electrostatic field is a conservative field.

3. There are no net work is done in moving a charge along a closed path
in an electrostatic field.

—

§LE-dT=o

4. From Stokes’s theorem, electrostatic field is conservative, or irrotational.
VxE =0

5. Vector whose line integral does not depend on the path of integration are
called conservative vectors. ;

Innovative.Entrepreneurial.Global
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Electric Potential (Gradient)

1. The potential contours from a point charge form equipotential
surfaces surrounding the point charge.

2. The surfaces are always orthogonal to the field lines.

3. The electric field, E can be determined by finding the maximum rate
and direction of spatial change of the potential field,V .

4

E

i
o}
¥

m.

I

-VV

\

Equipotential
surface

The negative sign indicates that the field is pointing in the direction of decreasing potential.

24



Electric Potential (Gradient)

Example

E=-VV

VAB = VB _VA

— (0.3-0.8}V/
=05V

Vac =Ve =V,
=(0.3-0.8)V
=-05V

sefential
surface
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Example

Electric Potential (Gradient)

2-D Equipotential Contours

UTM
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Energy Density (Principle) (1)

1. The work required to bring charges from r = -® into the defined space.

_______________Q_ _______________ .(._,«__)’ ......... A)
Q> R
— ) | —‘(—1—> @ B>
| 1

a) Moving the first charge, Q1 requires no work since no force is
required to move this charge in defined space

b) Moving the second charge, Q2 requires work since the first charge,
Qi creates an electric field.

c) Moving the third charge, Qs requires work since there are two charges
already present.
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Energy Density (Principle) (2)

Bring the first charge Q1, the work done, W

W, =0
— rA
Bring the second charge Q2
- QQ
W, f 1 - dr
” 47&9 r— r
Bring the third charge Q3 Q0
N 47r50|rB — rA|
. —Q,V
W, = —j Q0; dr f QQ, dr Q2
Arg (r-r,) Are (r—r, )
Q0 9@
Are |t —r,|  Ame,|ro -1y
=Q,Vi3 +Q3Vys

28
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Energy Density (Principle) (3)

2. Hence the total work done in positioning the three charges is

WTotaI :Wl +W2 +W3

=0+Q,V,, + Qs (V31 +V32 ) (1)

3. If the charges were positioned in reverse order,

WTotaI :Wl +W2 +W3
- Ql (V12 +V13 ) + Q2V23 +0 (2)

4. Adding (1) and (2) gives

2 WTotaI - Q1 (V12 +V13 ) + Qz (V21 +V23 ) T Q3 (V31 +V32 )
- QlVTl + QZVT 2 T Q3VT 3
Thus,

1
WTotaI - E (leTl + Q2VT 2 T QSVT3)

where V;, ,V;, and V;; are total potential at A, B and C. -



Energy Density (Principle) (4)

5. In general, if there are n point charges, Q the total work done, W

TotaI Z Q VT|

or

Total - ZZ

| | # |

6. If the region has a continuous charge distribution, the total work done,
W

1
WTotaI :EIPVdV

7.Since p=V-D
W.

il T %J‘(§ . 5)\/ dv 01el0)




Energy Density (Derivation) (1)

Example
h EJ‘ v dv=2[ £ E2 dv
Show 5 V,O 5 ) %o
Solution
Since ,0=V|5 1 1

By using identity vector

Thus, (1) becomes

Innovative.Entrepreneurial.Global
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Energy Density (Derivation) (2)

By using divergence theorem

~J, v dv=— (vB)-as -~ [(B- 9V Jav

We know that V oc1/r and Dox1/r* thus, VD oc1/r?

For surface area (S ocr? that

6/E0-d8<x££

r

When surface, S become large, 1/r:0 thus, (2) reduces to

%J'va dv=—%L(l5-§V)dv

[(B-E)av

.50E2dv

32
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Faplace slEquation
L YPoisson’siEquation¢y
1. For fundamental electrostatics,

V.B=p, (@ VxE=0 ()

2. From (1), electrostatic field in linear, isotropic medium,

— —

V-D=V-¢E
= Py
3. From (2), electrostatic field is irrotational and E=-VV

—_ —_

V-¢E =V-(—€§V)
= Py
4. In homogeneous medium, ¢ is constant
V- (VV)=v?V
Py Poisson’s equation
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Ifaplace’slEquation:
' YPoisson slEquation]¢d

5. In a charge-free medium (in air), p, =0

V3V =0 Laplace’s equation

6. V?is called as Laplacian operator.

7. Laplace’s equation is important to solve scalar electrostatic problems
involving a set of conductors maintained at different potentials.
(include capacitor)

8. Laplace’s equation can be in Cartesian, cylindrical, or spherical
coordinates.
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Ifaplace siEquation

| 1Boisson siEquation]&))

Cartesian coordinate |
o oV oV
2 + 2 + 2
OX oy oz

=0 V(xy,2)

Cylindrical coordinate |

10 oV 1 oV 82V 0 V( )
p 0p '08,0 p° 0¢° 82 P92

Spherical coordinate |

1a(rzavj+ 1 a(singavj+ 1 azv_o V(r.0.4)
2arl or) risingadl a6) risin?o o4 0.9

V must is a scalar function
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UnlleiEnEss e (1)

1. Solving the electromagnetic differential equations in a domain of interest

(E, H, D, B and 3) , one may obtain many solutions.
2. However, there is only one real solution to the problem.

3. To find this real solution, one should know the boundary conditions
associated with the domain.

4. Thus, any solution differential equation ( Laplace’ s equation ) that
satisfies the boundary conditions must be the only solution regardless
of the methods used.

5. This is known as the uniqueness theorem.



Determine the difference potential, V,, in the dielectric region between a
pair of concentric spheres.
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cz\lelf Elscirosizilc Proolsms (2)

Solution

Using Poisson’s equation,

The potential, V is only a function of radial, r in spherical coordinate

1 5(,,2 aV(r)):_ Lo

r’ or or re.e,

(2)

Integrating (2) respect to dr for both side

N()  pore

or 28,80

r? + A

Integrating second time respect to dr for both side
/‘\;

/ 1
£Nn1
7 VU

4 \
f f ala
vV \ ] —
\ J

L’Uruﬂ ’
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Sczlar Elecirosizitic Proolams (3)

The absolute potential or equipotential surface for inner conductor and
outer conductor

_ P8 —A+B

2¢,6, A

Outer conductor
V(r=b)=V, =- Pob —A+B:O <~/ isgrounded

grgo

The difference potential,V,, between inner conductor and outer conductor

V,, =V, -V, :[— PR _A, Bj—(—’o—(’b—é+ Bj
(3)

2¢.6, a 266, b
v =P (b—a)—[A(b_a)j
2¢,.&, ab
From (3),
A Vadb  poab g _ 20 (a+Db) , Vaab
a—-b 2g¢ 2¢,65 a-Db

Innovative.Entrepreneurial.Global
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Sczler Elscitrosiziic Proolems (4)

Finally, the difference potential, V, between the spheres,
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8ozl E P (5)

Two infinite radial conductor planes with an interior angle, & as shown
in Figure.

A
\ | v=100v

-
I
Q

The potential and electric field density in the region between the
conductors by utilizing the uniqueness theorem.
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Solution
Laplace’s equation
2
=2
The solution is
V=Ap+B

The condition

0=A(0)+B  and 100=A(x)+B

Thus,

0

A=— and B
o
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The potential in the region between the conductors

V :1002
o

The electric field in the region between the conductors

E=-VV
= _ii(l()oﬁjgg
yoXol, a
100 -

=-——¢ (V/m)
Jo o1




Scalar El

Further Solution

—

(L

girosizitlc Proolams (8)

UTM

The flux density, D in the region between the conductors. For air, g =1

The surface charge density, o,

ps =D
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Sczlar Elecirosiziie Proolams (9)
Further Solution

The total charge, Q at the conductor plate

Q=[p,ds
s
~Z 2 100
= [ [ =—=dpd
Y 4P yo 04
_ 100‘90 (ZZ B Zl) In 1.
o P
The capacitance, C between conductor plate
c-Q
V0
_ ‘90(22 - Zl) In*2
“ P

What is the resistance, R between conductor plate ?



ocw.utm.my @HTM

........

References

J. A. Edminister. Schaum’s outline of Theory and problems of electromagnetics, 2"
Ed. New York: McGraw-Hill. 1993.

M. N. O. Sadiku. Elements of Electromagnetics, 3th Ed. U.K: Oxford University Press.
2010.

F. T. Ulaby. Fundamentals of Applied Electromagnetics, Media ed. New Jersey:
Prentice Hall. 2001.

Bhag Singh Guru and Hiiseyin R. Hiziroglu. Electromagnetic Field Theory
Fundamentals, 2" Ed. U.K.: Cambridge University Press. 2009.

W. H. Hayt. Jr. Engineering Electromagnetics, 5th Ed. New York: McGraw-Hill. 2009.



