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Maxwell’s Equations 

1. Modern electromagnetism is based on four fundamental relations 
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where is the electric field,

is the magnetic flux density, 

is the magnetic field, 

is the electric flux density or electric displacement,

is the current density,

v is the charge density.

Gauss’s Law

Faraday’s Law Ampere’s Law

Gauss’s Law

From Gauss’s law, the Coulomb’s law has been derived.



1. Electric flux line is an imaginary path or line drawn in a direction at 

any point (Direction of the electric field,       at that point). E


2. The electric flux,       is defined as
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where        is the electric flux density or so-called electric displacement.  
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4. The flux show the electric field intensity,   is dependent on the 

medium in which the charge is placed.

3. The electric flux density,       is defined as

Flux Density (2)

5. Gauss’s law state that the electric flux,        passing through any 

closed surface is equal to the total charge, Q enclosed by that 

surface.
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Del Operator (1)

1. The del operator,      is the vector differential operator.

2. In Cartesian coordinates
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Del Operator (2)

3. In cylindrical coordinates
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Del Operator (3)

4. In spherical coordinates
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Del Operator (Gradient Operator) (2)

5. The operator has no physical meaning by it self. 

6. The operator attains a physical meaning once it operates on a scalar 

physical quantity. 

7. The result of the operation is a vector whose magnitude is equal to the 

maximum rate of change of the physical quantity per unit distance. 

8. The direction result of the operation is along the direction of maximum 

increase.



Del Operator (Gradient Operator) (3)

9. The operator is useful in defining

a) Gradient of a scalar V

b) Divergence of a vector A

c) Curl of a vector A

d) Laplacian of a scalar V
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A
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V2
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Electric field intensity,  Potential 

Electric flux,  Magnetic flux     

Magnetic field intensity,  Current 

Stored energy      



Mathematical Theorem 
1. There are two important mathematical theorem 

a) Gauss’s Theorem (Divergence Theorem)

b) Stoke’s Theorem (Curl)

2. The divergence theorem states that the total outward flux of a vector field 

through the closed surface S is the same as the volume integral of the

divergence
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3. The Stoke’s theorem states that the circulation of a vector field 

around a closed path L is equal to the surface integral of the curl of  

over the open surface S bounded by L. 

and
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Gauss’s Theorem (Divergence Theorem) (1)
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Consider an element of volume dv = dxdydz in a 

vector field,  

and the vector field, though the surface S1

For surface S2

and the vector field, though the surface S2

Combining these two results
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Gauss’s Theorem (Divergence Theorem) (2)
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Similarly, for surface S3 and S4
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and for surface S5 and S6

These three results together cover the total surface:
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Stoke’s Theorem (1)
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Let , , and denote the vector field at A, B, C and D, respectively.
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Stoke’s Theorem (2)
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The total vector field for x-axis   (AB+CD)

The total vector field for y-axis   (BC+DA)

Adding these two results together for the complete rectangular  (ABCD)

 

dydx
y

F

x

F
ldF

ABCD

xy

 
































































































y

F

x

F
z

z

F

x

F
y

z

F

y

F
x

FFF

zyx

zyx

F

xyxzyz

zyx

ˆˆˆ

ˆˆˆ


 

  dydxzF

dydx
y

F

x

F
ldF

ABCD

xy

ˆ
























Summing for all such elements over the surface

Review back the cross product
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Electric Potential (Potential Energy)

1. Potential energy is a energy required by charge particle to move in a 

region against an electric field,     .

2. This is because work has to be done to overcome the force,      due to the 

electric field,      (negative sign).
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4. The work done in displacing from A to B
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7. Potential at any point is the potential difference between that point and

a chosen point (reference point) at which the potential is zero.

8. The potential between two points represents potential energy (work done) 

required to move a unit charge between the two points (points A and B).

Electric Potential (Work)
5. From Coulomb’s law, the force on charge, Q is                , so the work 

done, W
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6. Thus, the total work done, W  from A to B
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10. Potential difference,       is independent of the path between A and B.

11. Potential difference,       is measured in joules per coulomb, commonly 

referred to as volts (V).

ABV

9. is called potential difference between points A and B.

Electric Potential (Potential Difference)

ABV

12. Potential difference between points A and B can be written as
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where         and         are the absolute potentials at B and A, 

respectively.
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Electric Potential (Conservation of Energy)
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1. Potential difference is independent of the path between A and B.
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Electric Potential (Conservation of Energy)

2. Electrostatic field is a conservative field.

3. There are no net work is done in moving a charge along a closed path 

in an electrostatic field.

4. From Stokes’s theorem, electrostatic field is conservative, or irrotational.
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5. Vector whose line integral does not depend on the path of integration are 

called conservative vectors.
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1. The potential contours from a point charge form equipotential

surfaces surrounding the point charge.

2. The surfaces are always orthogonal to the field lines.

3. The electric field,  can be determined by finding the maximum rate 

and direction of spatial change of the potential field,     .

Electric Potential (Gradient)

E
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The negative sign indicates that the field is pointing in the direction of decreasing potential.
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Electric Potential (Gradient)
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Example

NEXT
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Electric Potential (Gradient)

Example

2-D Equipotential Contours



Energy Density (Principle) (1)

1. The work required to bring charges from r = -∞ into the defined space.

a)   Moving the first charge, Q1 requires no work since no force is

required to move this charge in defined space

b)   Moving the second charge, Q2 requires work since the first charge,   

Q1 creates an electric field.

c)   Moving the third charge, Q3 requires work since there are two charges

already present.

Q1

Q2

Q3

A

B

C


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Energy Density (Principle) (2)
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Energy Density (Principle) (3)

2. Hence the total work done in positioning the three charges is
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where         ,           and         are total potential at A, B and C.1TV 2TV 3TV
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Energy Density (Principle) (4)

5. In general, if there are n point charges, Q the total work done, W
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6. If the region has a continuous charge distribution, the total work done,   

W

7. Since D




  dvVDWTotal  


2

1



Energy Density (Derivation) (1)

Example
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Energy Density (Derivation) (2)

By using divergence theorem  
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Laplace’s Equation

& Poisson’s Equation (1)
1. For fundamental electrostatics, 

vD 


0 E


2. From (1), electrostatic field in linear, isotropic medium, 

v
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3. From (2), electrostatic field is irrotational and 
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4. In homogeneous medium, is constant 
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Poisson’s equation
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Laplace’s Equation

& Poisson’s Equation (2)

5. In a charge-free medium (in air), 0v

02  V Laplace’s equation

6.        is called as Laplacian operator.  2

7.   Laplace’s equation is important to solve scalar electrostatic problems

involving a set of conductors maintained at different potentials. 

(include capacitor)

8. Laplace’s equation can be in Cartesian, cylindrical, or spherical 

coordinates.



Laplace’s Equation

& Poisson’s Equation (3)
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1. Solving the electromagnetic differential equations in a domain of interest

 andE, H, D, B J
   

, one may obtain many solutions.

Uniqueness Theorem (1)

2. However, there is only one real solution to the problem.

3. To find this real solution, one should know the boundary conditions 

associated with the domain. 

4. Thus, any solution differential equation ( Laplace’ s equation ) that   

satisfies the boundary conditions must be the only solution regardless

of the methods used. 

5. This is known as the uniqueness theorem. 



Scalar Electrostatic Problems (1)

Determine the difference potential,        in the dielectric region between a 

pair of concentric spheres.
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Scalar Electrostatic Problems (2)
Solution

Using Poisson’s equation, 

The potential, V is only a function of radial, r in spherical coordinate
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Scalar Electrostatic Problems (3)
The absolute potential or equipotential surface for inner conductor and 

outer conductor
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Scalar Electrostatic Problems (4)

Finally, the difference potential,         between the spheres,abV
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Scalar Electrostatic Problems (5)

Two infinite radial conductor planes with an interior angle,       as shown 

in Figure.
z

0
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0V

V100V



The potential and electric field density in the region between the 

conductors by utilizing the uniqueness theorem. 



Scalar Electrostatic Problems (6)

Laplace’s equation

Solution
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Scalar Electrostatic Problems (7)

The potential in the region between the conductors
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The electric field in the region between the conductors 

 mVˆ100

ˆ100
1



























 VE




Scalar Electrostatic Problems (8)

The flux density,     in the region between the conductors. For air, 

Further Solution
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The total charge,  Q at the conductor plate  

Further Solution

Scalar Electrostatic Problems (9)
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