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1. Electrostatic is study of static electric charges.

2. Magnetostatic is a study of motion electric charges with uniform

velocity.

Reviews 

3. Electromagnetic is a study of motion electric charges with acceleration.

Steady current-carrying conductor in magnetic field produce motion force

Steady current-carrying conductor produce magnetic field 

(Galvanometer,  Electric motor)

Relative motion between conductors and a magnetic field produce current. 

(Electric generator or Dynamo, Transformer) 

Static charges produce electric field

Motion charges produce current

(Capacitor)

(Inductor)



2.  Electromagnetic induction is the process of producing electromotive force 

or current in conductor due to relative motion between conductors and a 

magnetic field.

1.   Electromagnet is a temporary magnet, which its magnetic fields is produced

by electric current. 

3.  Electromotive force (EMF) is a potential difference given to the changes by 

a battery (in volts).

Electromagnetic Field  



Electromagnetic Induction

(1) 

Faraday’s law states that the magnitude of the induced electromotive force 

(EMF) in a closed circuit or conductor is proportional to the rate of change of 

the number of lines of magnetic force linking it.

1. There are two laws of electromagnetic induction.

Faraday’s law states the relationship between induced current and the 

change of flux.

Lenz’s law states the direction of induced current.

Lenz’s law states that the direction of the induced current is such as to oppose 

the change causing it

 
dt

d
forceiveElectromot


EMF



Motion of force

Magnetic field

Current

Fleming’s right-hand rule

Electromagnetic Induction

(2) 



Electromagnetic Induction 

(Derivation using Maxwell’s Equation)
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By using Maxwell’s equation

Integrating both sides respect to surface
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A circular loop of N turns of conducting wire lies in the xy-plane with its

center at the origin of a magnetic field specified by

where b is the radius of the loop and ω is the angular frequency. Determine

the emf, V induced in the loop.
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The magnetic flux linking each turn of the circular loop is

Question (1)
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Question (2)

An h by w rectangular conducting loop is situated in a changing magnetic 

field                        . The normal of the loop initially makes an angle  α with    

ω as shown in Figure 1. Determine the induced emf , V in the loop when 

the loop is at rest.
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Figure 1

Solution

When the loop is at rest.
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Mutual Coupling Induction (Transformer) 1

2. For transformer, a time-varying magnetic field linking a stationary loop.

1. For generator, a moving loop with a time-varying area in a static magnetic

field.

Step-up Transformer Step-down Transformer

primary secondary primary secondary



Principle

a)  When the primary coil is connected to source of  a.c voltage, the changing 

current creates a varying magnetic field. 

b)  The varying magnetic field is carried through the core to the secondary coil.

c)  In the secondary coil, the varying field induces a varying electromotive force

(EMF). 

d)  This effect is called mutual inductance

Mutual Coupling Induction (Transformer) 2
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Mutual Coupling Induction (Transformer) 3



How can the ammeter read any value of current since the capacitor is 

an open circuit ?

Displacement Current Density (1) 

Ammeter

AC source



This displacement current does not exist in a time-independent system
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Verify that the conduction current in the wire equals the displacement

current between the plates of the parallel plate capacitor in the circuit.

The voltage source has

Question

Answer
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The electric field between the plates

The displacement flux density

The displacement current is computed from

Displacement Current Density (3) 



2. A plane wave has no electric field,      and magnetic field,     components 

along its direction of propagation

Plane Wave (1)  

1. A uniform plane wave is the wave that the electric field,     or magnetic 

field,     in same direction, same magnitude and same phase in infinite 

planes perpendicular to the direction of propagation.
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At a particular location z and at the particular time, t,  the electric field 

have the same phase at all points in the transverse plane.  

Example

yEŷ

Plane Wave (2)  

Direction of propagation

Direction of electric field polarization 

Direction of electric field polarization



Plane Wave and Polar Wave
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Plane wave Polar wave

Rectangular waveguide

Circular waveguide



Wave Propagation (Example)

Eρ
HØ

Wave Propagate in Coaxial Line

Direction of propagation



Wave Equations (1)

1. If the wave is in simple ( linear, isotropic and homogeneous ) 

nonconducting medium (            ), Maxwell’s equation reduce to 0
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Wave Equations (2)

Example

Using Maxwell’s equation
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Wave Equations (3)

1.  The wave equation also can written as
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tje Assuming an implicit time dependence             in the field vectors.

3. The        is called the wave number or propagation constant.k
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2. Equation (1) also called Helmholtz equation.

(1)

where c is the velocity of light in free space.



Wave Equations (Example)

For coaxial line, field is a function of  and z, but independent of .

Therefore, vector wave equation can be simplified to a scalar equation 

for

4. For magnetic intensity domain, 
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Integral and Differential Solutions for Coaxial Waveguides
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z z

Lossless Medium Lossy Medium

Direction of wave propagation Direction of wave propagation
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Plane Wave Propagation in Medium (1)
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Good Conductor

Direction of wave propagation
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Plane Wave Propagation in Medium (2)



1.   For a uniform plane wave with an electric field                    traveling in 

the z-direction, the wave equation can be reduced as    
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2.   The solution of this wave equation
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where        is the attenuation constant of the medium and        is its 

phase constant
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Plane Wave Propagation in Medium (3)



3. The        is called the wave number or propagation constant.
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Plane Wave Propagation in Medium (4)



6. By solving the (1) and (2),
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Plane Wave Propagation in Medium (5)



Lossless Medium Low-loss Medium Conductor
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Plane Wave Propagation in Medium (7)

7.   The associated magnetic field,  
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Maxwell’s equation

Gauss’s Law

(Electric fields)

Integral form: Description Information

Left side:

The number of electric field

lines – perpendicularly passing

through to a closed surface, .

Right side:

Total amount of charge, q

contained within that surface, .

Electric charge produces an

electric field, and the flux of

that field passing through any

closed surface is proportional to

the total charge, q contained

within that surface.

Charge on an insulated

conductor moves outward

surface.

The electric field, produced

by electric charge diverges from

positive charge and converges

upon negative charge.

The electric field, is tendency

to propagate perpendicularly

away from a surface charge.

Differential form:

Left side:

Divergence of the electric

field, – the tendency of the

field to ‘‘flow’’ away from a

specified location.

Right side:

Electric charge density, ρ
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Gauss’s Law

(Magnetic fields)

Integral form:

Left side:

The number of magnetic field

lines – perpendicularly

passing through a closed

surface.

Right side:

Identically zero.

The total magnetic flux passing

through any closed surface is

zero.

Flux enter the closed surface is

same with the flux come out

from the surface.

The divergence of the

magnetic field at any point is

zero.

Differential form:

Left side:

Divergence of the magnetic

field – the tendency of the

field to ‘‘flow’’ away from a

point than toward it.

Right side:

Identically zero.
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Faraday’s Law

Integral form:

Left side:

The circulation of the vector

electric field, around a closed

path, C.

Right side:

The rate of change with time

(d/dt) of magnetic field, through

any surface, .

Changing magnetic flux

through a surface induces

an emf in any boundary

path, C of that surface,

and a changing magnetic

field, induces a

circulating electric field.

Differential form:

Left side:

Curl of the electric field, – the

tendency of the field lines to

circulate around a point.

Right side:

The rate of change of the

magnetic field, over time

(d/dt)

A circulating electric

field, is produced by a

magnetic field, that

changes with time.
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Ampere’s Law

Integral form:

Left side:

The circulation of the

magnetic field, around a

closed path, C.

Right side:

Two sources for the magnetic

field, ; a steady conduction

current, and a changing

electric field, through any

surface, bounded by closed

path, C.

An electric current or a

changing electric flux

through a surface

produces a circulating

magnetic field around any

path, C that bounds that

surface.

Differential form:

Left side:

Curl of the magnetic field, –

the tendency of the field lines

to circulate around a point.

Right side:

Two terms represent the

electric current density, and

the time rate of change of the

electric field, .

A circulating electric

field, is produced by a

magnetic field, that

changes with time.

An electric current, or a

changing electric field,

through a surface

produces a circulating

magnetic field, around

any path that bounds that

surface.
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