|@uTM

USIVERSIT TECNICLOG MALAYSIA

SCJ2013 Data Structure & Algorithms

Introduction to Abstract Data Type
& C++

Nor Bahiah Hj Ahmad & Dayang
Norhayati A. Jawawi

©080

ocw.utm.my @UTM

Objectives

At the end of the class students are expected to:

Understand Abstract Data Type concept

Review C++ programming

= Declaring a class, data member and function member
= Creating constructor and destructor

= Pass object as function parameter

Return object from a function

Array of class

Pointer to class

a

a

a

ocw.utm.my @_UTM

Abstraction

Abstract data type (ADT)

* A collection of data and a set of operations on the data

* Given the operations’ specifications, the ADT’s operations

can be used without knowing their implementations or
how data is stored,

Abstraction

 The purpose of a module is separated from its
implementation

e Specifications for each module are written before
implementation

ocw.utm.my @UTM

Abstraction

Data abstraction

* Focuses on the operations of data (what you can do to a
collection of data), not on the implementation of the

operations (how you do it)
- develop each data structure independently from the rest

of the solution
Functional abstraction

e Separates the purpose of a module from its
implementation

ocw.utm.my @UTM

Information Hiding

Information hiding
— Hide the details within a module.

— To limit the way to deal with module and data, so
that other module cannot modify the data.

— Makes these details inaccessible from outside the
module.

Boskacion of book ocw.utm.my @ UTM

Abstraction Example

book
title —

= abstractto |year attributes
aut hor
publ i sher
price

—

get Dat a()
— print()

\ checkPrice() — behavior
checkPubl i sher ()

Abstraction of a book

ocw.utm.my @UTM

Encapsulation

 The process of combining data and functions into a
single unit called class.

e The programmer cannot directly access the data.

Data is only accessible through the functions present
inside the class.

e Data encapsulation is an important concept of data
hiding.

ocw.utm.my @UTM

C++ Classes

A class defines a new data type

A class contains data members and methods
(member functions)

By default, all members in a class are private

e But can be specified as public

An object is an instance of a class

ocw.utm.my @ UTM

C++ Class Definition

class clasName

{) _—

public:
I!st of data member declaration;_ class member

priJ;E:iOf function member declaration; declarations:
list of data member declaration; o dagirnanber
list of function member declaration; N .

}; // end class definition function

member

—

public : members that are accessible by other modules
private : members that are hidden from other modules and
can only be accessed by function member of the same class.

ocw.utm.my

Class Definition for Book

class book
{ private:

// data member declaration as private

float price;
int year;
char author[20], title[25];

public:

book(); // Default constructor
// Constructor with parmeter
book(char *bkTitle,double bkPrice);
book(int = 2000);

// C++ function

void getData();

void print();

float checkPrice()const;

char * getAuthor();

~book() ; // destructor

// end book declaration

©UIM

ocw.utm.my @UTM

Class Methods

Class methods consists of
— Constructor
— Destructor
— C++ functions.

— const function

ocw.utm.my @UTM

Constructors

e Constructors

— Used to create and initialize new instances of a class
— Is invoked when an instance of a class is declared

— Have the same name as the class
— Have no return type, not even voi d

e A class can have several constructors

— However, compiler will generate a default constructor if no
constructor is defined.

Constructor Properties

More than one constructor can be declared

Each constructor must be distinguished by the

arguments.

book();
book(char *bkTitle,double bkPrice);
book(int = 2000);

Default constructor: book();

Can have argument:
book(char *bkTitle,double bkPrice);

Can have default argument:
book(int = 2000);

13

ocw.utm.my @UTM

Default Constructor Implementation

Sets data members to initial values

book: :book()

{ price = 10.00;
strcpy (author,”Dayang Norhayati™);
strcpy (title, “Learn Data Structure™);

year = 2012;
} // end default constructor

Instance declaration:
book myBook;

Instance myBook is created with the price set to
10.0, author set to Dayang Norhayati, title set to
Learn Data Structure and year set to 2012

ocw.utm.my @UTM
Constructor with Argument
Implementation

book: :book (char *bkTitle,double bkPrice)
{ strcpy (title, bkTitle);
price = bkPrice;

}

Instance declaration:
book nyBook(“ Nor Bahi ah”, 25. 00);

Price Is set to 25.00
Author is set to NorBahiah

ocw.utm.my @UTM

Constructor With Default Argument
Implementation

book: :book(int year);
// Constructor with default argument
{ price = 10.00;
strcpy (author,”’NorBahiah™);
strcpy (title, “Learn C++7);
} // end default constructor

2 methods of to declare instance of a class:

book myBook; // set year to default value, 2000
book yourBook(2009); // set year to 2009

Avoid ambiguity error - when implementing constructor
with default argument

ocw.utm.my @UTM

Destructor

e Destroys an instance of an object when the
object’s lifetime ends

e Each class has one destructor

— The compiler will generate a destructor if the
destructor is not defined

e Example: ~book():

book: :~book()
{ cout << '""\nDestroy the book with title "
<< title;

}

ocw.utm.my @UTM

Function Member Implementation

voild book::getData()

{ cout << '\nEnter author®"s name : ";
cin >> author;
cout << ""\nEnter book title : ';
cin >> title;

+
Method to call the member function:

From main() or non-member function
cout << myBook.getData() << endl;

const member function — cannot alter value

float book: :checkPrice()const
{ return price; }

ocw.utm.my @ UTM

Classes as Function Parameters

Class objects can be passed to another function as
parameters

3 methods of passing class as parameter to function
= Pass by value

= Pass by reference

= Pass by const reference

Pass by value — Any change that the function makes to the
object is not reflected in the corresponding actual argument
in the calling function.

ocw.utm.my @ UTM

Pass by value

class subject

{ =
private:
char subjectName[20];
char kod[8];
Int credit;
public:) . .
subject (char *,char *,int k=3); friend function is
void getDetail();)] used to pass object as
) friend void changeSubject(subject); parameter and allow
subject:: subject (char *sub,char *kd,int kre) non_membe_r function
{ strcpy(subjectName,sub); to access private
strcpy(kod, kd); member.
credit = kre;
+
void subject:: getDetail()
{
cout << "\n\nSubject Name : " << subjectName;
cout << "\nSubject Code " << kod;
cout << "\nCredit hours " << credit;

ocw.utm.my Q:D[TTD&

) R -

Pass by value Continued...

/1 friend function inplenentation that receive object as

par anet er
void changeSubject(subject sub); // receive object sub
{ cout << "\nlnsert new subject nane: "; 1 Access class

cin >> sub.subjectName;
cout << "\nlnsert new subject code: "; el
cin >> sub.kod; i
cout << "\n Get new information for the subject."; private data
sub. getDetail(); | member from
} sub.
mai n()
{ subject DS("Data Structure C++",6"SCJ2013");
DS. getDetail ();
changeSubject(DS); // pass object DS by value
cout << "\n View the subject information again: ";
DS.getDetail (); // the initial value does not change
getch();

member,

21

ocw.utm.my @UTM

Pass by reference

* Any changes that the function makes to the
object will change the corresponding actual
argument in the calling function.

e Function prototype for function that receive a
reference object as parameter: use operator &

functionType functionName(className & classObject)

{
{

// body of the function

ocw.utm.my Q:DLIIDJ

- -

Pass by Reference

// pass by reference
// friend function that receive object as parameter
void changeSubject(subject &sub); // operator & 1s used

{

}

cout << "\nlnsert new subject name: '';

cin >> sub. subjectName;

cout << "\nlnsert new subject code: ';

cin >> sub.kod;

cout << "\n Get new iInformation for the subject.';
sub. getDetail();

main()

{

subject DS("'Data Structure C++",''SCJ2013");

DS.getDetail();

changeSubject(DS); // pass by reference

cout << "\n View the subject information again: "';
DS.getDetail(); // the value within the object has changed

getch(Q);

23

ocw.utm.my @UTM

const Parameter

e Reference parameter can be declared as
const if we don’t want any changes being
done to the data in the function.

 Function prototype for function that receive a
reference object as parameter.

functionType functionName(const className & classObject)

1
1

// body of the function

ocw.utm.my @_UTM

const Parameter

void changeSubject(const subject &sub);
// operator const and & i1s used
{ cout << "\nlnsert new subject name: '';
cin >> sub. subjectName;
cout << '""\nlnsert new subject code: '';
cin >> sub.kod;
cout << "\n Get new information for the subject.';
sub. getDetail();

In the example, data member for sub is trying to be changed.
Error will occur since parameter const cannot be modified.

25

ocw.utm.my @UTM

Class as Return Value from Function

Syntax for declaring function that return a class object

className functionName(parameter list)

1
}

// function body

Syntax to call function that return a class
objectName = functionName();
where,

= ObjectName, an object from the same class with the type of
class return from the function. This object will be assigned with
the value returned from function

o FunctironName(): function that return class

ocw.utm.my QZE[PIB@

Class as Return Value from Function

Function that return a class object, Point

Point findMiddlePoint(Point T1, Point T2):}-ReUHntypeisackws

{
double midX, midY;

midX = (Tl.get_ x() + T2.get_ x()) 7/ 2;
midY (Tl.get y(O + T2.get_ y(O) 7 2;

Point middlePoint(midX, midY); F create instance of Point

1 et abesllee v]> Return instance of Point

Statement that call function that return a class

Point pointl(10,5), point2(-5,5);

Point point3; // use defult argumen

// point3 1s the point In the middle of pointl and point2

point3 = findMiddIePoint(pointl,pointZi}— Call FindMiddlePoint that

return object and assign to
point3

27

ocw.utm.my @UTM

Array of class

A group of objects from the same class can be
declared as array of a class

Example:

= Array of class students registered in Data Structure
class

= Array of class lecturer teaching at FSKSM
= Array of class subjects offered in Semester I.

Every element in the array of class has it’s own
data member and function member.

Syntax to declare array of objects :
className arrayName[arraySize];

ocw.utm.my

Array of class

class staff {
char name[20];
int age ;
float salary;
public:
void read data() ;
{ cin >> name >> age >> salary;
void print _data()
{ cout << name << age << salary; }

-

main()
{ Declare 20 managers from

staff manager[20]; class staff. Each element of
// declare array of staff manager has name, age

} and salary.

©UIM

ocw.utm.my @UTM

Array of class

2 methods to call member function for manager array.

By using array subscript in order to access manager in
certain location of the array.

cin > n ;

manager|[n].read data() ;

cout << manager[n].name << manager|n].age ;
manager|[n].print_data() ;

2. By using loop in order to access a group of managers.

// read iInformation for 10 managers

for (Int Xx =0 ; X < 10; xX++)
manager|[x].-read data();

// print information of 10 managers

for Cinty =0 ; y < 10; y++)
manager|[y].-print data(Q);

ocw.utm.my @UTM

Pass Array of Object to Function

class i1info

{
private:
char medicine[15];
char disease[15];
public:
void setMed() { cin >> medicine;}
void setDisease() { cin >> disease;}
char*getMedicine(){return medicine;}
char* getDisease() {return disease;}
}s

Declaration of class info that store information about the disease and the
relevant medicine

ocw.utm.my @UTM

Pass Array of Object to Function

main()
{ info data[10];
for (int n = 0; n < 5; n++)
{ data[n].setMedicine);
data|n].setDisease();
+

cout <<"\nList of disease and medicine';
for (int n = 0; n < 5; n++)
cout << "\n" << data[n].getMedicine()<<
data|n].getDisease();

// pass the whole array to function
checkMedicine(data) ;

}

Function checkMedicine(data) receives an array of object
info. This function requires the user to enter the name of the
disease and the function will search for the medicine that is

suitable for the disease.

ocw.utm.my @UTM

Pass Array of Object to Function

From mai n(), statement checkMedi ci ne(data) ;
calls this function, where dat a is an array of objects from class info.

void checkMedicine(info x[])
{ char diseas[20];
int found = O;
cout << "\nEnter the disease name: '';
cin >> diseas;
for (int n = 0; n < 5; n ++)
IT (strcmp(diseas, x[n]-getDisease()) == 0)

{ cout << '"\nMedicine for your disease: " << diseas
<< " 1s " << x[n]-.getMedicine();
found = 1;
break;
+

it (found == 0)
cout << '""\nSorry, we cannot find the medicine for your
disease. Please refer to other physician.';

ocw.utm.my @UTM

Pointer to Object

Pointer — store address of a variable.
Pointer can also store address of an object.

Example

student studentl; // create i1nstance of
student

student* studentPtr = &studentl;

Create a pointer variable studentPtr and

initialize the pointer with the address of instance
studentl

ocw.utm.my @UTM

Pointer to Object

2 methods to access class member through
pointer variable studentPtr :

(*studentPtr).print()

or
studentPtr ->print()

ocw.utm.my

©UIM

Pointer to Object

// pointer to object
#include <iostream.h>
#include <string.h>
class student
{ =
private:
char name[30];
unsigned long metricNo;
public: // constructor
student(char* nama,unsigned long num)
{
no_metrik = num;
strcpy(name, nama);
ks
void print()
{ cout <<*\nStudent’s name:“ << name;
cout <<‘“\nStudent’s metric number:“
<< metricNo;
ks

}; // end of student class

void main()

{

student studentl(*Ahmad', 123123);
student student2(*Abdullah', 234234);
cout << “Address of the object";
cout << '""\nAddress studentl: "
<< &studentl
<< "\nAddress student2 : "
<< &student?;
student* ptr;
cout << '"\n\nPointer value “;
ptr = &studentl;
cout <<"\nPointer value for studentl“
<< ptr;
ptr = &student2;
cout <<"'\nPointer value for student2“
<< ptr;
ptr ->print();

ocw.utm.my

Pointer to Object

Program Output

Address of the object

Address studentl: :0x0012ff68

Address student2: :0x0012ff44

Pointer value

Pointer value for studentl: 0x0012ff68
Pointer value for student2: 0x0012ff44
Student’s name: Abdullah

Student’s metric number: 234234

©UIM

ocw.utm.my @ UTM

Pointer to Object

Operator new can also be used to allocate
memory for a pointer variable.

Operator delete destroys memory for a pointer
variable.

void main()

{

student *ptr = new student(*Ahmad", 123123);
ptr -> print();

delete(ptr);

ptr = new student("'Abdullah™™, 234234);

ptr ->print();

delete(ptr);

38

ocw.utm.my @UTM

Conclusion and Summary

Abstract Data Type is a collection of data and a set of operations on
the data.

Abstraction implements information hiding and encapsulation,
whereby other modules cannot tamper with the data.

In C++, abstraction is implemented by using class.

[m]

In class declaration, there are declaration of data members and
function members

Function members consists of constructor, destructor, c++
function and const function.

Object can be passed as function parameter by value or by
reference.

Return type of a function can also be a class.
An Array and Pointer can also be declared of type class.

ocw.utm.my @UTM

References

Nor Bahiah et al. Struktur data & algoritma
menggunakan C++. Penerbit UTM, 2005

Richrd F. Gilberg and Behrouz A. Forouzan,
“Data Structures A Pseudocode Approach
With C++”, Brooks/Cole Thomson Learning,
2001.

12/3/2011

