

SLUDGE TREATMENT AND DISPOSAL

Source of Sludge

Primary clarifier

Secondary clarifier

Waste stabilization pond (FP, MP)

Aerated Lagoon (AL, MP)

Septic tank

Characteristics – Primary Sludge

3-7% solids

60 – 80 % organic

Gray, fairly coarse, strong odours

More condensed and coarse in texture compared to the sludge from the secondary sedimentation tank

Characteristics – Secondary Sludge

Mainly microorganisms

Brownish, flocculent appearance and earthy odour

Depends on the growth of microorganisms

Attached - big and condensed

Suspended – fine and light/less dense

Why Treat Sludge

Still biodegradable

Can exert oxygen demand

May contain hazardous microbes

Sludge Treatment

- 1. Thickening
- 2. Stabilization
 - 3. Drying
 - 4. Disposal

Sludge Thickening

To reduce the sludge volume

Thickening Method

Gravity thickener and/or air floatation

Sludge still in liquid form

The % of solid volume increased twice

Applied for sludge to be biologically stabilized

Gravity Thickener

For sludge from attached growth

Use gravity forces for solid separation

Similar in design to conventional sedimentation tank

Figure 14-11

Schematic diagram of a gravity thickener: (a) plan and (b) section.

Plan

Effluent channel

JTM

Dissolved Air Floatation (DAF)

For sludge from suspended growth

Separates solids from the liquid in an upward direction by attaching fine bubbles to particles of suspended solids which then float

Thickened sludge is skimmed off at the top of the tank

Figure 13.10 Schematic diagram of a dissolved-air flotation system.

Mechanical Thickener

For sludge to be incinerated

The sludge will become semi-solid

Vacuum filter and centrifuge

Sludge Stabilization

To convert the organic solids (in sludge) to a more refractory or inert materials

Biological Stabilization

Anaerobic digestion Aerobic digestion

Anaerobic Digestion

One of the oldest and most widely used

End product are liquid and gases

% of biomass transformed from organic is minimum

For 50 – 60% decomposition of organic substances, only less than 10% of biomass is formed

Anaerobic Digestion

Require proper maintenance

Produce gases, methane which is later used as source of energy for the plant

65 - 70% - methane (1 m³ gas/ 1 kg solid sludge)

$$25 - 30\% - CO_2$$

Anaerobic Digestion Process

Common digestion rate

t = 30 - 60 d

Sedimentation occurred in reactor

Anaerobic Digestion Process

High digestion rate

t = 10 - 20 d

More effective

Smaller

Sedimentation process in different reactor

Aerobic Digestion

Use for **secondary** sludge only

Endogenous respiration occurred for microorganisms

Easier for maintenance

Difficult for releasing the water

Drying Process

To reduce the water content before the sludge been disposed

Methods

Drying bed

Lagoon / pool

Vacuum filter

Centrifuge

Pressure filter

Drying Bed

Remove moisture by natural evaporation and gravity

10-23 cm of sand placed over a 20-50 cm layer of gravel

Underdrain system that consist of perforated pipe

Drying Bed

The digested sludge is discharged on the bed in a 30-45 cm layer and allowed to dewater by drainage through the sludge mass and supporting sand and by evaporation from the surface exposed to air

Figure 14-45

Typical conventional sand drying bed:
(a) plan and pictorial views and (b) cross-sectional view. Insert—view of sludge drying beds with sludge in various stages of dryness.

Centrifuge

Figure 14-40

Schematic diagrams of two solid-bowl centrifuge configurations for dewatering sludge: (a) countercurrent and (b) cocurrent.

Belt-press

Figure 14-41

Belt-press dewatering: (a) three basic stages of belt-press dewatering,

Press Filter

figure 14-43

Typical fixed volume, recessed-plate filter pressused for dewatering sludge: (a) schematic, (b) pictorial view of a typical installation.

Figure 14-44

Cross section of a variable valume recessed-plate filter press.

(a)

Sludge Disposal

Sludge Disposal

Disposal site Composting

Disposal Site

Sludge need to be stabilized

Sanitary landfill

Leachate – must be controlled and treated

