SCR 1013 : Digital Logic

Module 4:

BOOLEAN ALGEBRA & LOGIC SIMPLIFICATION

Laws and Rules of Boolean Algebra
Constructing Truth table from Boolean Expression
Standard Forms of Boolean Expression
Determining standard Expression from truth table
Logic Simplification using:

- Boolean algebra
- Karnaugh Map

Laws & Rules of Boolean Algebra

- Basic laws of Boolean Algebra
 - Commutative Laws

•
$$A + B = B + A$$

•
$$AB = BA$$

Associative Laws

•
$$A + (B + C) = (A + B) + C$$

•
$$A(BC) = (AB)C$$

Distributive Laws

•
$$A(B+C) = AB + AC$$

Rules of Boolean Algebra

1	A + 0 = A
2	A+1=1
3	$A \bullet O = O$
4	$A \cdot 1 = A$
5	A + A = A
6	$A + \overline{A} = 1$
7	$A \cdot A = A$
8	$A \cdot \overline{A} = 0$
9	$\overline{\overline{A}} = A$
10	A + AB = A
11	$A + \overline{A}B = A + B$
12	(A+B)(A+C)=A+BC

Rules of Boolean Algebra

Lets proof these rules of Boolean Algebra using basic gates and Laws of Boolean Algebra.

DeMorgan's Theorems ...

DM theorem 1:

The complement of a <u>product of variables</u> is equal to the <u>sum</u> of the complements of the <u>variables</u>

$$\overline{XY} = \overline{X} + \overline{Y}$$

DM theorem 2:

The complement of a <u>sum of variables</u> is equal to the <u>product</u> of the complements of the <u>variables</u>

$$\overline{X + Y} = \overline{XY}$$

Standard Form of Boolean Expressions

- Boolean expression can be converted into one of 2 standard forms:
 - The sum-of-products (SOP) form
 - The product-of-sums (POS) form
- Standardization makes the evaluation, simplification, and implementation of Boolean expressions more systematic and easier.
- Product term = a term with the product (Boolean multiplication) of literals
- Sum term = a term with the sum (Boolean addition) of literals

Sum-of-Products (SOP) Form

- SOP = when 2 or more product terms are summed
- Eg: $AB_{P1} + ABC_{P2}$ $ABC_{P1} + CDE_{P2} + BCD_{P3}$
- SOP can also contain a single variable term
- In SOP a single overbar cannot extend over more than 1 variable, but more than 1 variable can have an overbar.

ABC

ABC

Product-of-Sums (POS) Form

- POS = when 2 or more sum terms are multiplied.
 - $-(A+B)_{S1}(A+B+C)_{S2}$
 - $(A + B + C)_{S1}(C + D + E)_{S2}(B + C + D)_{S3}$
- Like SOP, POS
 - can also contain a single variable term
 - a single overbar cannot extend over more than 1 variable,
 but more than 1 variable can have an overbar.

$$\overline{A} + \overline{B} + \overline{C}$$

$$\overline{A+B+C}$$

Converting Standard SOP to Standard POS

 Find out the relationship between the two and how to derive the Standard SOP expression from a given standard POS expression, and vice versa.

Karnaugh Map (K-Map)

- K-Map is similar to the truth table, but it presents all of the possible values of input and output.
- This is shown in an array of cells.
- K-Maps can be used for expressions with 2, 3, 4 or 5 variables.
- The number of cells in a K-Map = total number of possible input variable combinations \rightarrow 3 = 2^3 = 8
- Cells that differ by only one variable are adjacent
 - Cell 010 is adjacent to 000, 011 and 110
- Physically, cells that share their walls are adjacent
- In a K-map with 4-variable or more, the top-most & bottom-most cells of a column (and row) are adjacent.

OPENCOURSEWARE

AB	0 1
00	
01	
11	
10	

	1000	
AB	000	010
00	ĀĒĊ	ĀĒC
01	ĀBĒ	ĀBC
11	ABC	ABC
10	ABC	ABC

3-Variable Karnaugh Map

CD AB	00	01	11	10
00				
01				
11				
10				

C AB	D 00	01	11	10
00	ĀBCD	ĀĒCD	ĀĒCD	ĀBCD
01	ĀBCD	ĀBCD	ĀBCD	ĀBCŌ
11	ABCD	ABCD	ABCD	ABCD
10	ABCD	ABCD	ABCD	ABCD

4-Variable Karnaugh Map

K-Map SOP Minimization

- K-Map is used to simplify Boolean expressions to their minimum form.
- A minimized SOP expression has the fewest possible term with each term having fewest possible variables.
- A minimized SOP expression needs fewer logic gates than standard expression.
- To map an SOP expression to a map:
 - Step 1: determine the binary value of each product term
 - Step 2: Place a 1 in a cell that have the same value as the product term

Example: Mapping SOP expression

$$\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

DPENCOURSEWARE

K-Map Simplification of SOP Expressions

- There are 3 steps to obtain a minimum SOP expression from a K-map.
 - Grouping the 1s
 - Determine product term for each group
 - **Summing the resulting product terms**

K-Map POS Minimization

- For POS expression in standard form, a 0 is put in the Kmap for each sum term.
- The methods are similar to SOP minimization, except 0 is used.
- To map a Standard POS expression:
 - Step 1: Determine the binary value of each sum term(i.e. that makes the sum term = 0)
 - Step 2: Check result and place a 0 on the corresponding cell in K-map

OPENCOURSEWARE

OPENCOURSEWARE

K-Map Simplification of POS Expressions

- The process is basically the same as with SOP expressions:
 - Group 0s instead of 1s.
 - The rules of grouping 0s are the same as those for
 1s
 - Expression must be in Standard POS form.

Converting between POS and SOP using K-Map

- A mapped SOP expression can be converted to an equivalent POS expression.
- This is a good way to compare which can be implemented using fewer gates.
- Given a minimum POS map, the 1s will yield a standard SOP expression.
- This SOP expression can then be minimized by grouping the 1s.

Reducing a Combinational Logic Circuit

- Reducing a combinational logic circuit will result in lesser gates used
- How to do this?
 - Step 1 : Read the logic circuit
 - Step 2 : Get the final output expression
 - Step 3a: Apply De Morgan's theorem and Boolean algebra
 - Step 3b: K-map can be used too.

