OPENCOURSEWARE

SCR 1013 : Digital Logic

Module 2: NUMBER SYSTEM & CODES

Module 2 Content

- Number system
 - Decimal Number
 - Binary Number
 - Hexadecimal Numbers
 - Octal Number
- Conversion between Number system
- Digital Codes (BCD, Parity, Gray, ASCII)
- Number representations in Digital System
- Arithmetic operations in Digital System

Numbering System

- A number system is the set of symbols used to express quantities as the basis for counting, determining order, comparing amounts, performing calculations, and representing value.
- Examples include the Arabic, Babylonian, Chinese, Egyptian, Greek, Mayan, and Roman number systems.
- Any positive integer B (B > 1) can be chosen as the base or radix of a numbering system.
- If base is B, then B digits (0, 1, 2, ..., B 1) are used.

Decimal Number

- The <u>decimal numbering</u> system has 10 digits <u>0</u> through <u>9</u>.
- The decimal numbering system has a base of 10 with each position weighted by a <u>factor</u> of <u>10</u>

...
$$10^5 10^4 10^3 10^2 10^1 10^0$$
. $10^{-1}10^{-2} 10^{-3} 10^{-4} 10^{-5}$...

Example:

Express decimal 47 as a sum of the values of each digit.

$$47_{10} = (4 \times 10^{1}) + (7 \times 10^{0}) = 40 + 7$$

= 47

Binary Number

- The binary numbering system has 2 digits 0 and 1.
- The binary numbering system has a base of 2 with each position weighted by a factor of 2.
- Example: 0, 1, 10, 11, 100, 101, 110, 111, 1000, ...

1 0 1 1. 0 1 binary number 2^3 2^2 2^1 2^0 2^{-1} 2^{-2} place values

Octal Number

- Uses base 8.
- Includes only the digits 0 through 7.
- Based on the binary system with a 3-bit boundary.
- The binary numbering system has a base of 8 with each position **weighted** by a **factor** of **8**.
- Example: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, ...

```
4 	 5 	 3 	 6 	 0 	 . 	 7 	 2 	 octal number 
8^4 	 8^3 	 8^2 	 8^1 	 8^0 	 8^{-1} 	 8^{-2} 	 place values
```


Hexadecimal Number System

- Allows for convenient handling of long binary strings.
- Base 16
 - 16 possible symbols
 - 0-9 and A-F
 - $(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)_{16}$ $(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)_{10}$
 - 0, 1, ..., F, 10, 11, 12, ..., 1F, 20, 21, ...

9 C F 3 . A 1 octal number
$$16^3 \ 16^2 \ 16^1 \ 16^0 \ 16^{-1} \ 16^{-2}$$
 place values

Hex, Octal, Binary and Decimal Numbering System

Hexadecimal	Octal	Binary	Decimal	
00000	0000000000	0000	000000000	
1	1	0001	1	
2	2	0010	2	
3	3	0011	3	
4	4	0100	4	
5	5	0101	5	
6	6	0110	6	
7	7	0111	7	
8	10	1000	8	
9	11	1001	9	
Α	12	1010	10	
В	13	1011	000(11)000(
С	14	1100	12	
O DO DO	15 000	1101	000(13)000(
	16	1110	14 @ 0	
n F	. 17	1111	15	

CODES IN DIGITAL SYSTEMS

What are codes?

- Code is a rule for converting a piece of information into another form or representation, not necessarily of the same type.
- One reason for coding is to enable communication in places where ordinary spoken or written language is difficult or impossible.

Binary Coded Decimal (BCD)

- BCD is a way to express each of the decimal digits with a binary code.
- There are only 10 code groups in the BCD system, one for every digit (0000 1001)
- Invalid codes are 1010, 1011, 1100, 1101, 1110 and 1111
- Coded values for decimal digit:

Decimal	BCD	Decimal	BCD
0	0000	5	0101
1	0001	6	0110
2	0010	7	0111
3	0011	8	1000
00004000	0100	9	1001

Gray Codes

- Designed to prevent false output from electromechanical switches.
- Are widely used to facilitate error correction in digital communications such as digital terrestrial television and some cable TV systems.
- In modern digital communications, Gray codes play an important role in error correction.
- It is arranged so that every transition from one value to the next value involves only one bit change.
- Sometimes referred to as reflected binary, because the first eight values compare with those of the last 8 values, but in reverse order.

Parity Code

- Parity bit used for bit error detection
 - Even parity total number of 1s even
 - Odd parity total number of 1s odd
- Parity bit is append to the code at the leftmost position (MSB).
- Example:

Code		Number of 1s	Even/Odd	Even Parity	Odd Parity
110010		3	Odd	1 110010	0 110010
101110		4	Even	0 101110	1 101110
101000		2	Even	0 101000	1 101000
11011	99	5	Odd	1 110111	0 110111

Error Detection by Parity Checking

- Assume that data = 0101
- It uses even parity.
- Therefore the appended parity bit is 0.
- The data with parity bit: 0 0101
- The data is transmitted.
- The data is received as $00001 \rightarrow \text{odd no. of 1, not even!!}$

American Standard Code for Information Interchange (ASCII)

- It has 128 characters and symbols represented in 7-bit binary code
- Example:
- $A = 1000001_2$
- $a = 1100001_2$
- A <u>parity bit</u> is added so that the total number of bits is 8 → a byte.

NUMBER REPRESENTATION IN DIGITAL SYSTEM

- Unsigned Number representation
- Signed Number representations

Integer Representation

- Numbers can be represented as a combination of a value, or magnitude and sign, plus or minus
- Unsigned integer
- Signed integer

Unsigned Integer Representation

- By unsigned integer, it is mean no negative values.
 - E.g. 0, 1, 2, ..., 254, 255, 256, 257, 65535, 65536, 65537, ..., 2000000000, 2000000001, ...
- A <u>bit</u> can store unsigned integers from 0 to 1.
- A <u>byte</u> of 8 bits can store unsigned integers from 0 to 255 = $2^8 1$.
- A <u>word</u> of 16 bits can store unsigned integers from 0 to 65535 = $2^{16} 1$.
- In binary arithmetic, if the length of the number is restricted to 16 digits (0s and 1s), the largest value is 1111 1111 1111 $1111_2 = 65535$, and the smallest is 0.

Signed Numbers

- Integers that do not have a sign indication are considered as positive numbers and they are referred to as unsigned numbers.
 - 01000, 11101
- However, integers can be positive and negative.
 - +01000, +11101, -10001, -0111001
 - Need for a code to represent '-' and '+'.
- Positive and negative integers use a code system to indicate the sign.
 - Signed bit: 0 (+ve) or 1 (-ve) positioned at MSB
 - Positive numbers \rightarrow 0 01000, 0 11101
 - Negative numbers \rightarrow 1 10101, 1 0101001
 - This is referred as signed numbers.

Signed Numbers Representation

- Three representation:
 - Sign and magnitude (simple representation)
 - 1's complement
 - 2's complement

Arithmetic Operations

- Integer Numbers
 - Unsigned Numbers
 - Signed Numbers
- Addition
- Subtraction

Arithmetic Operation: Addition

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	10

• Example:

Arithmetic Operation: Subtraction

- In digital system, subtraction is performed by using 2's complement and addition.
- Carry from the MSB (signed bit) is deleted.
- Example:

```
010011 - 001111 = 010011 + (-001111)= 010011 + (110001)= 000100
```

