
	

	

MODULE 4

ALGORITHM
EFFICIENCY

DATA STRUCTURE AND ALGORITHMS

FACULTY OF COMPUTING

UNIVERSITI TEKNOLOGI MALAYSIA
	

	

	

MODULE 4: ALGORITHM EFFICIENCY

OBJECTIVES FOR STUDENTS

1. To analyze the number of steps of algorithms relative to the increasing of input

size, n.

2. Find the class of complexity in big ‘O’ notation.

KEY CONCEPT

1.0 INTRODUCTION TO ALGORITHM

1.1 Algorithm analysis - Study the efficiency of algorithms when the input size grows

based on the number of steps, the amount of computer time and space.

1.2 Analysis of algorithms is a major field that provides tools for evaluating the

efficiency of different solutions

1.3 What is an efficient algorithm?

• Faster is better (Time) - How do you measure time? Wall clock? Computer
clock?

• Less space demanding is better - But if you need to get data out of main
memory it takes time.

1.4 Algorithm analysis should be independent of :

• Specific implementations and coding tricks (programming language,
control statements – Pascal, C, C++, Java)

• Specific Computers (hw chip, OS, clock speed)
• Particular set of data (string, int, float)

1.5 For a particular problem size, we may be interested in:

• Worst-case efficiency: Longest running time for any input of size n
A determination of the maximum amount of time that an algorithm requires
to solve problems of size n.

• Best-case efficiency: Shortest running time for any input of size n
A determination of the minimum amount of time that an algorithm requires
to solve problems of size n.

• Average-case efficiency: Average running time for all inputs of size n
A determination of the average amount of time that an algorithm requires
to solve problems of size n.

	

	

1.6 The worst case is always considered as the maximum boundary for execution

time or memory space for any input size. Execution time for the worst case is the
complexity time.

1.7 Example of algorithm: sequential search of n elements
• Best-case: We get lucky and find the target in the first place we look. O(n) =

1
• Worst-case: We look at every element before finding (or not finding) the

target. O(n) = n
• Average-case: Depends on the probability (p) that the target will be found.

O(n) = n/2

2.0 COMPLEXITY OF ALGORITHM

2.1 Complexity time can be represented by Big ‘O’ Notation (notation that used to

show the complexity time of algorithms). Big ‘O’ notation is denoted as : O(acc)
whereby: O – order and acc – class of algorithm complexity.

2.2 Big O Notation

Notation Execution time / number of step

O(1) Constant function, independent of input size, n. Example:
Finding the first element of a list.

O(logxn) Problem complexity increases slowly as the problem size
increases.
Squaring the problem size only doubles the time.
Characteristic: Solve a problem by splitting into constant
fractions of the problem (e.g., throw away ½ at each step)

O(n) Problem complexity increases linearly with the size of the input,
n. Example: counting the elements in a list.

O(n
logxn)

Log-linear increase - Problem complexity increases a little faster
than n.
Characteristic: Divide problem into sub problems that are
solved the same way. Example: mergesort

O(n2) Quadratic increase.
Problem complexity increases fairly fast, but still manageable.
Characteristic: Two nested loops of size n.

O(n3) Cubic increase.
Practical for small input size, n.

O(2n) Exponential increase - Increase too rapidly to be practical.
Problem complexity increases very fast.
Generally unmanageable for any meaningful n. Example: Find

	

	

all subsets of a set of n elements.

2.3 Order-of-Magnitude Analysis and Big O Notation. Figure 4.1 shows comparison

of growth-rate functions in tabular and graphical form/

A comparison of growth-rate functions: (a) in tabular form

A comparison of growth-rate functions: (b) in graphical form

Figure 4.1 A comparison of growth-rate functions

	

	

• Order of increasing complexity - O(1) < O(logxn) < O(n) < O(n log2n) < O(n2) <

O(n3) < O(2n)

Notation n = 8 n = 16 n = 32

O(log2n) 3 4 5

O(n) 8 16 32

O(n log2n) 24 64 160

O(n2) 64 256 1024

O(n3) 512 4096 32768

O(2n) 256 65536 4294967296

• Example of algorithm (only for cout operation):

Notation Code

O(1) int counter = 1;
cout << "Arahan cout kali ke " << counter << "\n";

O(logxn) int counter = 1; int i = 0;
for (i = x; i <= n; i = i * x) // x must be > than 1
{ cout << "Arahan cout kali ke " << counter << "\n";
 counter++;
}

O(n) int counter = 1; int i = 0;
for (i = 1; i <= n; i++)
{
 cout << "Arahan cout kali ke " << counter << "\n";
 counter++;
}

O(n
logxn)

int counter = 1; int i = 0; int j = 1;
for (i = x; i <= n; i = i * x) // x must be > than 1
{
 while (j <= n)
 {
 cout << "Arahan cout kali ke " << counter << "\n";
 counter++; j++;
 }
}

O(n2) int counter = 1;
int i = 0;
int j = 0;
for (i = 1; i <= n; i++)
{

	

	

 for (j = 1; j <= n; j++)
 { cout << "Arahan cout kali ke " << counter << "\n";
 counter++;
 }
}

O(n3)

int counter = 1;
int i = 0;
int j = 0;
int k = 0;
for (i = 1; i <= n; i++)
{ for (j = 1; j <= n; j++)
 { for (j = 1; j <= n; j++)
 { cout << "Arahan cout kali ke " << counter << "\n";
 counter++;
 }
 }
}

O(2n) int counter = 1;
int i = 1;
int j = 1;
while (i <= n)
{ j = j * 2;
 i++;
}
for (i = 1; i <= j; i++)
{ cout << "Arahan cout kali ke " << counter << "\n";
 counter++;
}

2.4 The complexity time of algorithm can be determined theoretically – by

calculation or practically – by experiment or implementation.

2.5 Determine the complexity time of algorithm - practically

• Implement the algorithms in any programming language and run the
programs

• Depend on the compiler, computer, data input and programming style.

2.6 Determine the complexity time of algorithm - theoretically

• The complexity time is related to the number of steps / operations.
• Complexity time can be determined by

o Count the number of steps and then find the class of complexity, or
o Find the complexity time for each step and then count the total.

	

	

2.7 The following algorithm is categorized as O(n).

int counter = 1;
int i = 0;
for (i = 1; i <= n; i++)
{
 cout << "Arahan cout kali ke " << counter << "\n";
 counter++;
}

Num statements

1 int counter = 1;

2 int i = 0;

3 i = 1

4 i <= n

5 i++

6 cout << "Arahan cout kali ke " << counter << "\n"

7 counter++

• Statement 3, 4 and 5 are the loop’s control and can be assumed as one

statement.

Num Statements

1 int counter = 1;

2 int i = 0;

3 i = 1; i <= n; i++

6 cout << "Arahan cout kali ke " << counter << "\n"

7 counter++

• Statement 3, 6 and 7 are in the repetition structure.
• It can be expressed by summation series.

∑
=

=+++=
n

i
nnfffif

1

)(...)2()1()(

where f(i) – statement executed in the loop

	

	

• Example, if n = 5, i = 1.

∑
=

=++++=
5

1

5)5()4()3()2()1()(
i

fffffif

The statement that represented by f(i) will be repeated 5 times.

• Example, if n = 5, i = 3

∑
=

=++=
5

3

3)5()4()3()(
i

fffif

 The statement that represented by f(i) will be repeated 3 times.

• Example: if n = 1, i = 1

∑
=

==
1

1

1)1()(
i

fif

The statement that represented by f(i) will be executed only once.

Statements Number of steps

int counter = 1; 1

int i = 0; 1

i = 1; i = n; i++ n

cout << "Arahan cout kali ke " << counter << "\n" n

counter++ n

 Total steps:
 1 + 1 + n + n + n
 = 2 + 3n

2.8 Besides by summation series, the steps can be calculated using the following

formula:
Number of steps = b - a + 1 where,

o b is the final conditions to control the loop,
o a is the initial conditions of the control loop,
o 1 is the constant at beginning of the loop.

	

	

2.9 Consider the largest factor.

• Algorithm complexity can be categorized as O(n)

Algorithm Number of Steps

 void sample4 ()
 {
 for (int a=2; a<=n; a++)
 cout << “Contoh kira langkah “;
 }

0
0
n-2+1 = n-1
(n-1).1 = n-1
0

Total steps 2(n-1)

 Total steps = 2(n-1), Complexity Time = O(n)

Algorithm Number of steps

 void sample5 ()
 {
 for (int a=1; a<=n-1; a++)
 cout << “ Contoh kira langkah “;
 }

0
0
n-1-1+1 = n-1
(n-1).1 = n-1
0

Total steps 2(n-1)

Total steps = 2(n-1), Complexity Time = O(n)

Algorithm Number of Steps

void sample6 ()
 {
 for (int a=1; a<=n; a++)
 for (int b=1; b<=n; b++)
 cout << “ Contoh kira langkah “;
 }

0
0
n-1+1 = n
n.(n-1+1) = n.n
n.n.1 = n.n
0

Total steps n+2n2

Total Steps = n+2n2, Complexity Time = O(n2)

	

	

Algorithm Number of Steps

void sample7 ()
 {
 for (int a=1; a<=n; a++)
 for (int b=1; b<=a; b++)
 cout << “ Contoh kira langkah “;
 }

0
0
n-1+1=n
n.(n+1)/2
n.(n+1)/2
0

Total steps 2n+n2

Total steps = 2n+n2, Complexity Time = O(n2)

To get n.(n+1)/2, we used summation series as shown below:

1 1

2

(1 2 3 4 ...)

(1)
2

2

n a

a b
n n

n n

n n

= =

= + + + + +

+
=

+
=

∑∑

2.10 Count the number of steps and find the Big ‘O’ notation for the following
algorithm

int counter = 1;
int i = 0;
int j = 1;

for (i = 3; i <= n; i = i * 3) {
 while (j <= n) {
 cout << "Arahan cout kali ke " << counter << "\n";
 counter++;
 j++;
 }

 }

Statements Number of steps

int counter = 1;
1

1
() 1

i
f i

=

=∑

	

	

int i = 0;
1

1
() 1

i
f i

=

=∑

int j = 1; 1

1
() 1

i
f i

=

=∑

i = 3; i <= n; i = i * 3
1

3
3
() (3) (9) (27) () log

i
f i f f f f n n

=

= + + + + =∑

j <= n
3

3 1
() () log .

n n

i j
f i f j n n

= =

=∑ ∑

cout << "Arahan cout kali ke "

 << counter

 << "\n";

1

3
3 1
(). (). () log . .1

n n

i j i
f i f j f i n n

= =

=∑ ∑ ∑

counter++;
1

3
3 1
(). (). () log . .1

n n

i j i
f i f j f i n n

= =

=∑ ∑ ∑

j++;
1

3
3 1
(). (). () log . .1

n n

i j i
f i f j f i n n

= =

=∑ ∑ ∑

 Total steps:

=> 1 + 1+ 1 + log3n + log3n . n + log3n . n . 1 + log3n . n . 1 + log3n . n . 1
=> 3 + log3n + log3n . n + log3n . n + log3n . n + log3n . n
=> 3 + log3n + 4n log3n

Consider the largest factor for : 3 + log3n + 4n log3n

 (4n log3n)

§ and remove the coefficient
 (n log3n)

§ In asymptotic classification, the base of the log can be omitted as shown in this
formula:
 logan = logbn / logba

§ Thus, log3n = log2n / log23 = log2n / 1.58…
§ Remove the coefficient 1/1.58..

§ So we get the complexity time of the algorithm is

 O(n log2n)

	

	

2.11 Summary on algorithm efficiency

• Algorithm analysis to study the efficiency of algorithms when the input size
grow, based on the number of steps, the amount of computer time and space

• Can be done using Big O notation by using growth of function.

• Order of growth for some common function:
O(1) < O(logxn) < O(n) < O(n log2n) < O(n2) < O(n3) < O(2n)

• Three possible states in algorithm analysis best case, average case and worst
case.

