
	

	

MODULE 7

LINKED LIST
DATA STRUCTURE AND ALGORITHMS

FACULTY OF COMPUTING
UNIVERSITI TEKNOLOGI MALAYSIA

	

	

	

OBJECTIVES FOR STUDENTS

• To understand the linked list concept.

• To work with pointers in linked list.

• To implement linked list operations in problem solving.

KEY CONCEPT

1.0 INTRODUCTION TO LINEAR LIST

1.1 Definition of list

• List is a group of objects which is organized in sequence.
• List categories: linear list and nonlinear list.
• Linear list is a list in which the data is organized in sequence, for example:

array, linked list, stack and queue.
• Non-linear list is a list in which the data is stored not sequence, for

example: tree and graph.

1.2 Array and linked lists are linear lists that do not have any restrictions while

implementing operations such as, insertion, deletion and accessing data in the
lists. The operations can be done in any parts of the lists, either in the front of
the lists, in the middle or at the back of the lists.

1.3 Stack and queue are two types of linear lists that have restrictions while

implementing their operations. Stack - to insert, delete and access data can
only be done at the top of the lists. Queue - Insert data in a queue can be
done at the back of the lists while to delete data from a queue can only be
done at the front of the list.

1.4 Example of array as a list is shown in Figure 7.1, whereby, an array of objects

named Student which contains attributes such as name, course and year. The
element of the array can only be accessed based on the index or subscript of
the array.
• In order to access all information for a student named Mohd Saufi, located

at index 3 of the array, we can access the element using the subscript as
follows :

cout << Student[3].name << Student[3].course << Student[3].year

Student

	

	

index name course year
[0] Abu Umar Engineering 1
[1] Tan Ai Tee Education 2
[2] Durrani Nukman Physic 1
[3] Mohd Saufi Mathematics 1
[4] Nur Ilahi Islamic Study 2

[5] Ahmad Ali
Computer
Science

3

[6]
[7]

Figure 7.1 Student Array

1.5 Figure 7.2 show a linked lists which contains several nodes which are sorted in
ascending order. Each node contains at least:

o A piece of data of any type.
o Pointer to the next node in the list

Linked list need a pointer variable, named head to point to the first node.

 head node1 node2 … noden

 Aziz

Farha
n

Zaqwa
n

null

Figure 7.2 Sorted linked list

1.6 Basic operations for linear lists:
• Insert new data in the lists.
• Delete data from the lists.
• Update data in the list.
• Sort data in the lists and
• Find data in the list.

2.0 ARRAY AS A LINEAR LIST

2.1 Size of array is fixed during array declaration.

• Disadvantages of array - data insertion is limited to the size. In order to insert
data, we need to check whether the array is full or not. If the array is full,
the insertion cannot be done.

• Advantage of array - data in the array can be accessed at random using
the index of the array. For example, in Figure 7.1, when we execute the
statement:

cout << Student[3].name << Student[3].course << Student[3].year

the information of Student[3], Mohd Saufi taking Mathematics course and
in year 1 will be the output. Accessing any data by using random access
in an array can be done faster compare with accessing the data
sequentially from the array.

	

	

2.2 The drawbacks of array implementation:

• Requires an estimate of the maximum size of the list. May waste space, if
the memory is not fully utilized.

• Linear access to print the whole content of the list or to find an element from
the list will take longer time, O(n).

• Insert and delete element are slow.
o To insert element at index 0 which already occupied by other element,

requires first pushing the entire array down one spot to make room
o To delete at index 0 - requires shifting all the elements in the list up.
o On average, half of the lists need to be moved for either operation.

• Need space to insert item in the middle of the list.
• Example – To insert Fatimah Adam in between students named Durrani

Nukman and Mohd Saufi as shown in Figure 7.3, it requires first pushing the
entire array from index 3 down one spot to make room, as shown in Figure
7.4

Student

index name course year
[0] Abu Umar Engineering 1
[1] Tan Ai Tee Education 2
[2] Durrani Nukman Physic 1
[3] Mohd Saufi Mathematics 1
[4] Nur Ilahi Islamic Study 2

[5] Ahmad Ali
Computer
Science

3

[6]
[7]

Figure 7.3 Insert element between Durani Nukman and Mohd Saufi

Student
index name course year

[0] Abu Umar Engineering 1
[1] Tan Ai Tee Education 2
[2] Durrani Nukman Physic 1
[3]
[4] Mohd Saufi Mathematics 1
[5] Nur Ilahi Islamic Study 2

[6] Ahmad Ali
Computer
Science

3

[7]
Figure 7.4 Push the entire array from index 3 down one spot

• Insert Fatimah Adam at empty space at index 3. Shown in Figure 7.5.
• New item is inserted at index 3, after shifting the data from index 3 onwards.

Fatimah	

Adam	

Fatimah	
 Adam	

Fatimah	

Adam	

	

	

Student
index name course year

[0] Abu Umar Engineering 1
[1] Tan Ai Tee Education 2
[2] Durrani Nukman Physic 1
[3] Fatimah Adam Civil Engineering 2
[4] Mohd Saufi Mathematics 1
[5] Nur Ilahi Islamic Study 2

[6] Ahmad Ali
Computer
Science

3

[7]
Figure 7.5 Insert Fatimah Adam at index 3

• To delete item in the middle of the array will leave a blank space in the

middle. Example, there is empty space after delete Durrani Nukman at
index 2 as shown in Figure 7.6.

Student

index name course year
[0] Abu Umar Engineering 1
[1] Tan Ai Tee Education 2
[2]
[3] Fatimah Adam Civil Engineering 2
[4] Mohd Saufi Mathematics 1
[5] Nur Ilahi Islamic Study 2

[6] Ahmad Ali
Computer
Science

3

[7]
Figure 7.6 Delete Durrani Nukman at index 2

• It requires shifting all the elements in the list one position up in order to

eliminate the space. For example: when information about Durrani Nukman
is deleted, all elements under it are shifted up. Shown in Figure 7.7.

Student

index name course year
[0] Abu Umar Engineering 1
[1] Tan Ai Tee Education 2
[2] Fatimah Adam Civil Engineering 2
[3] Mohd Saufi Mathematics 1
[4] Nur Ilahi Islamic Study 2
[5]

Ahmad Ali
Computer
Science

3

[6]
[7]

Figure 7.7 Shift up all elements below Durrani Nukman

	

	

3.0 LINKED LIST

3.1 Pointer Implementation (Linked List)

• Ensure that the list is not stored contiguously
• Use a linked list - a series of structures that is not necessarily adjacent in

memory
• Each node contains the element and a pointer to a structure containing its

successor. The last cell’s next link points to NULL
• Compared to the array implementation,

o the pointer implementation uses only as much space as needed for the
elements currently on the list

o but requires space for the pointers in each cell

3.2 Variations of linked lists

• Singly linked list
• Doubly linked list
• Circular linked list
• Circular doubly linked list
• Sorted linked list
• Unsorted linked list

3.3 Singly Linked Lists

• A linked list is a series of connected nodes. Each node contains at least
o A piece of data (any type)
o Pointer to the next node in the list

• Head: pointer to the first node
• The last node points to NULL

3.4 Circular linked lists

• The last node points to the first node of the list

3.5 Doubly linked lists

	

	

	

• Each node points to not only successor but the predecessor
• There are two NULL: at the first and last nodes in the list
• Advantage: given a node, it is easy to visit its predecessor. Convenient to

traverse lists backwards

3.6 Circular doubly linked list

• No NULL value at the first and last nodes in the list
• Convenient to traverse lists backwards and forwards

3.7 Sorted Linked list

• The nodes in the list are sorted in a certain order.

3.8 Unsorted Linked list

• The nodes in the lists are not sorted in any order.

4.0 IMPLEMENTATION OF LINKED LIST

4.1 A Simple Linked List Class

• We need two classes declaration: Node and List
• Declaration of Node class for the nodes require at least two attributes:

o data: double-type data in this example
o next: a pointer to the next node in the list

1
2

// Program 7.1a
class Node {

	

	

3
4
5
6

public:
 double data; // data
 Node* next; // pointer to next
};

• Declaration of List class for the linked list contain at list

o head: a pointer to the first node in the list.
o Since the list is empty initially, head is set to NULL

1
2
3
4
5
6
7
8
9

10
11
12
13

// Program 7.1b
class List {
public:
 List(void) { head = NULL; } // constructor
 ~List(void); // destructor
 bool IsEmpty() { return head == NULL; }
 Node* InsertNode(double x);
 int FindNode(double x);
 int DeleteNode(double x);
 void DisplayList(void);
private:
 Node* head;
};

4.2 List Operations

• IsEmpty: determine whether or not the list is empty
• InsertNode: insert a new node at a particular position
• FindNode: find a node with a given value
• DeleteNode: delete a node with a given value
• DisplayList: print all the nodes in the list

4.3 Inserting a new node to the list
• Node* InsertNode(double x)

o Insert a node with data equal to x. After insertion, this function
generates a sorted list, in ascending order.

o Find the location of the value to be inserted so that the value will be in
the right order in the list.

o Steps:
i. Locate index to insert the element.
ii. Allocate memory for the new node.
iii. Point the new node to its successor.
iv. Point the new node’s predecessor to the

new node.

4.4 Possible cases of InsertNode

	
 	

	

	

i. Insert into an empty list
ii. Insert in front
iii. Insert at back
iv. Insert in middle

 4.5 But, in fact, we only need to handle two cases

o Insert as the first node (Case 1 and Case 2)
o Insert in the middle or at the end of the list (Case 3 and Case 4)

4.6 InsertNode Source Codes

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

// Program 7.2
Node* List::InsertNode(double x) {

Node* currNode = head;
Node* prevNode = NULL;
while (currNode && x > currNode->data)
{ prevNode = currNode;
 currNode = currNode->next;
}

Node* newNode = new Node;
newNode->data = x;

if (prevNode == NULL)
{
 newNode->next = head;
 head = newNode;
}

else
{
 newNode->next = prevNode->next;
 prevNode->next = newNode;
}

return newNode;

}

4.7 Finding a node
• int FindNode(double x)
• Search for a node with the value equal to x in the list.
• If such a node is found, return its position. Otherwise, return 0.

1
2

// Program 7.3
int List::FindNode(double x) {

Locate	
 the	

position	
 of	

the	
 node	

being	

inserted.	
 	

	

Insert	
 as	
 first	
 element	

	

Create	
 a	
 new	

node	

	

	
 	

	
 	

Insert	
 after	
 prevNode	
 	

	

	

	

3
4
5
6
7
8
9

10
11
12
13

 Node* currNode = head;
 int currIndex = 1;
 while (currNode && currNode->data != x) {
 currNode = currNode->next;
 currIndex++;
 }
 if (currNode)
 return currIndex;
 else
 return 0;
}

4.8 Deleting a node
• int DeleteNode(double x)

o Delete a node with the value equal to x from the list.
o If such a node is found, return its position. Otherwise, return 0.

• Steps
o Find the desirable node (similar to FindNode)
o Release the memory occupied by the found node
o Set the pointer of the predecessor of the found node to the successor

of the found node
• Like InsertNode, there are two special cases

o Delete first node
o Delete the node in middle or at the end of the list

4.9 Delete node source codes

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

// Program 7.4
int List::DeleteNode(double x) {

Node* prevNode = NULL;
Node* currNode = head;
int currIndex = 1;
while (currNode && currNode->data != x)
{
 prevNode = currNode;
 currNode = currNode->next;
 currIndex++;
}

if (currNode) {
 if (prevNode) {
 prevNode->next = currNode->next;
 delete currNode;
 }
 else {

Find	
 the	

node	
 with	

its	
 value	

equal	
 to	
 x	
 	

	

	

	

	
 	

Delete	
 the	

node	
 in	
 the	

middle	
 or	

back	
 list	
 	

	

	

19
20
21
22
23

 head = currNode->next;
 delete currNode;
 }
 return currIndex;

 }
return 0;

}

4.10 Printing all the elements in the list

• void DisplayList(void)
o Print all the data of all elements in the list
o Print the number of the nodes in the list

4.11 Print data in the list source codes

1
2
3
4
5
6
7
8
9
10
11
12
13

// Program 7.5
void List::DisplayList()
{
 int num = 0;
 Node* currNode = head;
 while (currNode != NULL){
 cout << currNode->data << endl;
 currNode = currNode->next;
 num++;
 }
 cout << "Number of nodes in the list: " << num << endl;
}

4.12 Destroying the list

• ~List(void)
o Use the destructor to release all the memory used by the list.
o Step through the list and delete each node one by one.

4.13 Destroying the list source codes (destructor)

• All the nodes in the linked list will be destroyed one by one, starting from
the first node until the last node

1
2
3
4
5
6
7

// Program 7.6
List::~List(void) {
 Node* currNode = head, *nextNode = NULL;
 while (currNode != NULL)
 {
 nextNode = currNode->next;
 // destroy the current node

	
 	

Delete	
 the	
 node	
 in	
 the	
 first	
 list	

	

	

8
9

10
11

 delete currNode;
 currNode = nextNode;
 }
}

4.14 Implementing List

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

// Program 7.7
int main(void)
{
 List list;
 list.InsertNode(7.0);
 list.InsertNode(5.0);
 list.InsertNode(6.0);
 list.InsertNode(4.0);
 // print all the elements
 list.DisplayList();
 if(list.FindNode(5.0) > 0)

cout << "5.0 found" << endl;
 else

cout << "5.0 not found" << endl;
 if(list.FindNode(4.5) > 0)

cout << "4.5 found" << endl;
 else

cout << "4.5 not found" << endl;
 list.DeleteNode(7.0);
 list.DisplayList();
 return 0;
}

4.15 Array versus Linked Lists

• Linked lists are more complex to code and to manage compare to arrays,
but they have some distinct advantages.
o Dynamic: a linked list can easily grow and shrink in size.
o We don’t need to know how many nodes will be in the list. They are

created in memory as needed.
o In contrast, the size of a C++ array is fixed at compilation time.

• Easy and fast insertions and deletions

o To insert or delete an element in an array, we need to copy to
temporary variables to make room for new elements or close the gap
caused by deleted elements.

o With a linked list, no need to move other nodes. Only need to reset
some pointers.

	

4	

5	

6	

7	

Number	
 of	
 nodes	
 in	
 the	
 list:	

4	

5.0	
 found	

4.5	
 not	
 found	

4	

5	

6	

Number	
 of	
 nodes	
 in	
 the	
 list:	

3	

	

