
Recursive
SCSJ2013 Data Structures & Algorithms

Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi

Faculty of Computing

Objectives

1/14/2015 2

Identify problem solving
characterestics using recursive.

Trace the implementation of
recursive function.

Write recursive function in solving a
problem

Introduction

 Repetitive algorithm - sequence of operations is

executed repeatedly until certain condition is

achieved.

 Implemented using loop :

 while, for or do..while.

 C++ allow programmers to implement recursive to

replace loops.

 Not all programming language allow recursive

implement, e.g. Basic language.

3

Introduction

 Recursive is a repetitive process in which an

algorithm calls itself.

 A recursive procedure is mathematically more

elegant than one using loops.

 Sometimes procedures can become straightforward

and simple using recursion as compared to loop

solution procedure.

4

Introduction

 Advantage : Recursive is a powerful problem

solving approach, since problem solving can be

expressed in an easier and neat approach.

 Drawback : Execution running time for recursive

function is not efficient compared to loop, since

every time a recursive function calls itself, it requires

multiple memory to store the internal address of the

function.

5

Recursive solution

• Not all problem can be solved using recursive.

• Recursive solve problem by:

6

1. breaking the
problem into the

same smaller
instances of

problem,

2. solve each
smallest problem

and

3. combine back
the solutions.

Understanding recursion

Every recursive definition has 2 parts:

7

case(s) so
simple

BASE
CASE(S) break the

problem to
smaller sub-
problems

combine into a
solution to the
larger problem

RECURSIVE
CASE(S)

Rules for Designing Recursive Algorithm

8

Designing Recursive Algorithm

 Recursive algorithm.

9

if (terminal case is reached)// base case

<solve the problem>

else // general case

< reduce the size of the problem and

 call recursive function >

Base case

and general

case is

combined

Classic examples

 Multiplying numbers

 Find Factorial value.

10

Multiply 2 numbers using Addition

Method
 Multiplication of 2 numbers can be achieved by

using addition method.

 Example :

 To multiply 8 x 3, the result can also be achieved

by adding value 8, 3 times as follows:

 8 + 8 + 8 = 24

11

Implementation of Multiply()

using loop

int Multiply(int M,int N)

{ for (int i=1,i<=N,i++)

 result += M;

 return result;

}//end Multiply()

12

Implementation of recursive function:

Multiply()

13

int Multiply (int M,int N)

{

 if (N==1)

 return M;

 else

 return M + Multiply(M,N-1);

}//end Multiply()

Recursive algorithm

3 important factors for recursive

implementation:

14

There’s a condition where the function will stop
calling itself.

Each recursive function call, must return to the
called function.

Variable used as condition to stop the recursive
call must change towards terminal case.

15

Tracing Recursive Implementation
for Multiply().

Returning the Multiply() result to

the called function

16

Factorial Problem

 Problem : Get Factorial value for a positive integer

number.

 Solution : The factorial value can be achieved as

follows:

0! is equal to 1

1! is equal to 1 x 0! = 1 x 1 = 1

2! is equal to 2 x 1! = 2 x 1 x 1 = 2

3! is equal to 3 x 2! = 3 x 2 x 1 x 1 = 6

4! is equal to 4 x 3! = 4 x 3 x 2 x 1 x 1 = 24

N! is equal to N x (N-1)! For every N>0

17

Factorial function

18

int Factorial (int N)

{ /*start Factorial*/

if (N==0)

 return 1;

else

 return N * Factorial (N-1);

} /*end Factorial

Execution of Factorial(3)

19

Terminal case for Factorial(3)

20

Return

value for

Factorial(3)

21

Execution of Factorial(3)

Infinite Recursive

 Impossible termination condition

 How to avoid infinite recursion:

– must have at least 1 base case

– each recursive call must get closer to a base

case

22

Infinite Recursive : Example

23

#include <stdio.h>

#include <conio.h>

void printIntegesr(int n);

main()

{ int number;

 cout<<“\nEnter an integer value :”;

 cin >> number;

 printIntegers(number);

}

void printIntegers (int nom)

{ cout << “\Value : “ << nom;

 printIntegers (nom);

}

1. No condition

satatement to

stop the

recursive call.

2. Terminal case

variable does

not change.

Conclusion and Summary

• Recursive is a repetitive process in which an

algorithm calls itself.

• Problem that can be solved by breaking the

problem into smaller instances of problem, solve

and combine.

• Every recursive definition has 2 parts:

 BASE CASE: case that can be solved directly

 RECURSIVE CASE: use recursion to solve smaller
sub-problems & combine into a solution to the

larger problem

24

Thank You

http://comp.utm.my/

