
Queue with Array

Implementation
SCSJ2013 Data Structures & Algorithms

Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi

Faculty of Computing

Objectives

Queue concepts and applications.

Queue structure and operations

Implement queue using array

Introduction to Queue

 New items enter at the back of the

queue.

 Items leave from the front queue.

 Implement First-in, first-out (FIFO)

property.

 Queue is important in simulation &
analyzing the behavior of complex
systems

Queue Applications

Real-World
Applications

Cashier lines in
any store

Check out at a
bookstore

Bank / ATM Call an airline

Computer
Science

Applications

Print lines of a
document

Printer sharing
between

computers

Recognizing
palindromes

Shared
resource usage

Simulation
To reduce the

wait involved in
an application

Queue Implementation

Add/

Enqueue

Remove/

Dequeue

BackFront

A B C

Queue Implementation

Add/

Enqueue

backfront

Insert D into Queue (enQueue) : D is inserted at rear

A B C D

backfront

B C D

Remove/

Dequeue

Delete from Queue (deQueue) : A is removed

A

Queue Implementation

Array-based

Linear

Circular

Pointer-based
: Link list

Linear

Circular

Queue:

Linear Array Implementation
class Queue

{ private:

int front; // index at front

int back; // index at rear queue

char items[size]; //store item in Q

public:

Queue(); // Constructor - create Q

~Queue(); // Destructor - destroy Q

bool isEmpty(); // check Q empty

bool isFull(); // check Q full

void enQueue(char); // insert into Q

void deQueue(); // remove item from Q

char getFront(); // get item at Front

char getRear(); // get item at back Q

};

Queue

front

rear

items

createQueue()

destroyQueue()

isEmpty();

isFull();

enQueue();

deQueue();

getFront();

getRear();

Queue Declaration

Abstract Data Type

CreateQueue()operation
 Linear Array implementation

 Constructor:
– front and back are indexes in the array

– Initial condition: front =0 and back = -1

0 -1

front back [0] [1] [2] [3] …. maxQ-1

Queue::Queue()

{ front = 0;

back = -1;

}

Initial state for a queue linear array

items

Queue Operations

 Destroy Queue destructor : All elements in

the queue will be disposed.

 Check whether a queue is empty

– Queue Empty Condition : back < front

queue::~queue()

{ delete [] items; }

bool queue::isEmpty()

{ return bool(back < front); }

Queue Operations

 Check whether a queue is Full

– Queue Full Condition : back = size -1

– Cannot insert any more item into a queue, when

the queue is full.

bool queue::isFull()

{ return bool(back == size – 1); }

28 29 20 15 30

front back [1 2 …. 28 29
size-1

size

Queue Operations

 Insert into a queue (enQueue)

• Increment back

• Insert item in items[back]

void queue::enQueue(char insertItem)

{ if (isFull())

cout<< "\nCannot Insert. Queue is full!";

else

{ //insert at back

back++;

items[back] = insertItem;

} // end else if

}

enQueue() operations for a

queue with size = 5
0 -1

front back 0 1 2 3 4

Queue myQueue;

myQueue.enQueue(‘A’);

0 0 A

front back 0 1 2 3 4

myQueue.enQueue(‘B’);

0 1 A B

front back 0 1 2 3 4

myQueue.enQueue(‘C’);

0 2 A B C

front back 0 1 2 3 4

items

items

items

items

Queue operations

 Item at front and back can be retrieved

cout << myQueue.getFront(); //output is A

cout << myQueue.getRear(); // output is C

0 2 A B C

front back 0 1 2 3 4

char queue:: getFront() // get item at Front

{ return items[front] ; }

char queue::getRear() // get item at Back

{ return items[back] ; }

items

Queue operations

 Delete from a queue (deQueue)

• Increment front

void queue::deQueue()

{ if (isEmpty())

cout<< "\nCannot remove item. Empty Queue!";

else

{ //retrieve item at front

deletedItem = items[front];

front++;

} // end else if

}

deQueue() operations
myQueue.deQueue();

2 2 C

front back 0 1 2 3 4

1 2 B C

front back 0 1 2 3 4

deletedItem

A

myQueue.deQueue();

deletedItem

B

3 2

front back 0 1 2 3 4

myQueue.deQueue();

deletedItem

C

myQueue.deQueue(); Cannot remove item.
Queue is Empty with back < front

items

items

items

Queue operations – enQueue()
myQueue.enQueue(‘D’);

3 4 D E

front back 0 1 2 3 4

3 3 D

front back 0 1 2 3 4

myQueue.enQueue(‘E’);

3 4 D E

front back 0 1 2 3 4

myQueue.enQueue(‘F’);

Cannot insert F, even though there are empty spaces in front of

the queue array.
Currently, Queue is FULL with back == size – 1.

items

items

items

Linear Array Implementation -

Drawback
Problem: Rightward-Drifting:

– After a sequence of additions and removals, items

will drift towards the end of the array

– Even though, there are empty spaces in front of the
queue array, enQueue operation cannot be

performed on the queue, since back = size – 1.

3 4

front back

D E

0 1 2 3 4

Size -1

Rightward

drifting

Rightward Drifting Solutions
To optimize space and to solve rightward drifting:
1. Shift array elements after each deletion.

myQueue.deQueue();

0 1 B C

front back 0 1 2 3 4

1 2 B C

front back 0 1 2 3 4

deletedItem

A

items

items

Shift array elements

to front array

However, shifting is not effective and dominates
the cost of the implementation.

Rightward Drifting Solutions
2. Use a circular array: When front or back reach the

end of the array, wrap them around to the

beginning of the array.

3 0

front back

D E

0 1 2 3 4

MAX_QUEUE -1

Circular array F

In the figure, to insert F in the queue, F will be
inserted at the front queue and restart again at
index 0.

Queue Circular Array
 Problem:

– front and back no longer can be used as

condition to distinguish between queue-

full and queue-empty

 Solution:

– Use a counter, named count

– count == 0 means empty queue

– count == MAX_QUEUE means full queue

 Disadvantage

– Overhead of maintaining a counter or flag

Circular Array Implementation

– Queue declarations
const int MAX_QUEUE = maximum-size-of-queue;

QueueItemType items [MAX_QUEUE];

int front;

int back;

int count

– Initial condition:
count = 0, front = 0,

back = MAX_QUEUE – 1

– The Wrap-around effect is

obtained by using modulo arithmetic

(%-operator)

Front

MAX_QUEUE -1
back front

MAX_QUEUE = 8

count = 0

0

1

2

34

5

6

7

Empty circular

queue.

Circular Arrays Implementation
– Insertion

• Increment back, using modulo

arithmetic

• Insert item
• Increment count

20

45

51

76

MAX_QUEUE -1

Back

front

MAX_QUEUE = 8

count = 4

0

1

2

34

5

6

7

back = (back + 1) % MAX_QUEUE;

items[back] = newItem;

++count;

After insert 20, 45, 51 and 76

sequentially into circular

queue

Circular Arrays Implementation

76

MAX_QUEUE -1

Back
Front

MAX_QUEUE = 8

count = 1

0

1

2

3
4

5

6

7

• Deletion
• Increment front using

modulo arithmetic
• Decrement count

After delete 20, 45
and 51 sequentially
from circular queue

front = (front + 1) % MAX_QUEUE;

--count;

Summary and Conclusion

 Queue can be implemented using linear array and circular

array.

 Structure of queue linear array is the items that hold the array,

front and back. Insertion happens at back, while deletion

happens at front.

 Drawbacks of queue linear array is that it will lead to rightward

drifting problem after sequence of deletion and insertion is

performed on the queue.

 Queue circular array can be perform in order to solve the

problem, whereby after front or back reach the end of the

array, it will wrap around to the beginning of the array.

Thank
You

http://comp.utm.my/

