
ArrayList

Associate Prof. Dr. Norazah Yusof

Object Oriented
Programming – SCJ2153

The ArrayList Class

• Similar to an array, an ArrayList allows
object storage

• Unlike an array, an ArrayList object:
– Automatically expands when a new item is added

– Automatically shrinks when items are removed

• Requires:

 import java.util.ArrayList;

• This class is referred to as the Java Collection Framework (JCF).

• JCF includes classes that maintain collections of objects as
sets, lists, or maps.

8-2

Creating and Using an ArrayList
 and adding items using add() method

• Create an ArrayList object with no-args
constructor
– ArrayList townList = new ArrayList();

• To add element to the ArrayList, use the
add method:
– townList.add("Kangar");

– townList.add("Alor Setar");

• To get the current size, call the size method
– townList.size(); // returns 2

• Example: Lab 6 – Exercise 1 – Question 3
8-3

Accessing items in an ArrayList
Removing items in an ArrayList

• To access items in an ArrayList, use the get method as
follows:
townList.get(1); // 1 is the index of the item to get.

• A loop is used in the following statement to access every element in
the ArrayList named townList.
for(int i=0;i<townList.size();i++)

 System.out.print(townList.get(i)+" ");

• To remove items in an ArrayList, use the remove method
townList.remove(1); //This statement removes the second item.

townList.remove("Penang"); //This statement removes the item

 // with the value "Penang".

8-4

Adding and replacing existing items using two
argument method

• The ArrayList class's add method with
one argument adds new items to the end of
the ArrayList

• To insert items at a location of choice, use the
add method with two arguments:
townList.add(6, "Shah Alam");

This statement inserts the String "Shah Alam" at index 1

• To replace an existing item, use the set
method:
townList.set(1, "Muar");
This statement replaces “Kangar” with “Muar”

8-5

Using toString() method

• The ArrayList class's toString method
returns a string representing all items in the ArrayList
System.out.println(townList);

This statement yields :
[Muar, Alor Setar]

8-6

Using an ArrayList

• An ArrayList has a capacity, which is the
number of items it can hold without
increasing its size.

• The default capacity of an ArrayList is 10
items.

• To designate a different capacity, use a
parameterized constructor:

ArrayList list = new ArrayList(100);

8-7

Using a Cast Operator with the get Method

• An ArrayList object is not typed

• To retrieve items from an ArrayList, you
must cast the item to the appropriate type
ArrayList nameList = new ArrayList();

townList.add("Kluang"); // Inserts an item

String str = (String)townList.get(0);

• Try get without the cast to see the effect.

8-8

Using ArrayList as a Generic Data Type

• You can create a type-safe ArrayList object
by using generics.

• For example an ArrayList object for
Strings:
ArrayList<String> nameList = new ArrayList<String>();

• The get method no longer requires casts to
work.

8-9

