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1.1 Parametric Equations 

1.1.1 Definition:  

Equations )(tfx  , )(tgy   that express x and y 

in t is known as parametric equations, and t is called 

the parameter. 

 

How the parameter may be eliminated from the 

parametric equations to obtain the Cartesian 

equations? 

- no specific method 

- use algebraic manipulation 

 

Example 1:  Form Cartesian equations by 

eliminating parameter t in the following equations: 

(a) tx 2 , 14 2  ty     

(b) tx sin4 , ty 2cos2  

(c) 
tt eyex  ,    

(d) tytx ln3,3   

 

 

 



 

 

 

1.1.2 Curve Sketching of Parametric 

Equations 

 

Constructing tables of x and y  

 2 ways          for specific values of t. 

     Eliminating the parameter. 

 

Example 2: 

Sketch the graph of the following equations 

(a) tx 2 , 14 2  ty  

(b) 53  tx , 52  ty  

 

 

 

 

 



 

 

1.2  Polar Coordinates System 

Definition:  

The polar coordinates of point P is written as an 

ordered pair   ,r , that is ),( rP  where  

r  -   distance from origin to P  

   -  angle from polar axis to the line OP 

 

 

 

 

 

Note:  

(i)   is positive in anticlockwise direction, and it is 

negative in clockwise direction. 

(ii) Polar coordinate of a point is not unique. 

(iii) A point  ,r  is in the opposite direction of 

point  ,r . 
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Example 3:  Plot the following set of points in the 

same diagram: 

(a)  225,3 ,   225,1  ,   225,3  
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For every point P(r,θ) in 0 ≤ 𝜃 ≤ 2𝜋, there exist 

3 more coordinates that represent the point P. 

 

Example 4: 

Find all possible polar coordinates of the points 

whose polar coordinates are given as the following: 

(a)  45,1P      (b)  60,2 Q    (c)  225,1R  



 

 

1.3  Relationship between Cartesian and Polar 

Coordinates  

 

 

 

 

 

 

1) Polar      Cartesian 

 

cosrx    sinry   

 

2) Cartesian      Polar 

 

22 yxr    
x

y
tan  

 



 

 

Example 5: Find the Cartesian coordinates of the 

points whose polar coordinates are given as 

(a) 







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        (b) 

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


3

2
,4


    

(c) 30,2   

 

Example 6:  Find all polar coordinates of the points 

whose rectangular coordinates are given as 

(a)  5,11       (b)  2,0        (c)  4,4   

  

 

 

 

 

  

 



 

 

 

1.4 Forming polar equations from Cartesian 

 equations and vice-versa. 

 
To change the equation in Cartesian coordinates to polar 

coordinates, and conversely, use equation 

cosrx    sinry    22 yxr   

Example 7: Express the following rectangular equations 

in polar equations. 

(a) 2xy           (b) 1622  yx    (c) 1xy  

 

Example 8: Express the following polar equations in 

rectangular equations and sketch the graph. 

(a) sin2r        (b) 
 sin5cos4

3


r  

(c)  sin4cos4 r        (d) tan secr    

e) 
2

2

2

3cos 1
r




    



 

 

1.5 Graph Sketching of Polar Equations 

 

There are two methods to sketch a graph of  fr   

(1) Form a table for r and .    (  20  ).       

     From the table, plot the  ,r  points. 

(2) Symmetry test of the polar equation. 

      The polar equations is symmetrical about: 

      (a) x-axis if        ,  or ,r f r f         . 

    - consider 𝜃 in range [0, 1800] only. 

      (b) y-axis if        ,  or ,r f r f         . 

    - consider 𝜃 in range [0, 900] and [2700, 3600] 

      (c) origin if        ,  or ,r f r f        . 

    - consider 𝜃 in range [0, 1800] or [1800, 3600] 

* if symmetry at all, consider 𝜃 in range [0, 900] 

only. 



 

 

Example 9:  Sketch the graph of sin2r  

Solution: (Method 1) 

Here is the complete table 

𝜃 0 30 60 90 120 150 180 210 

𝑟

= 2sin𝜃 
0 1.0 1.732 2 1.732 1 0 -1.0 

 

𝜃 240 270 300 330 360 

𝑟 = 2sin𝜃 -1.732 -2 -1.732 -1 0 

 

Then, plot the points on the diagram: 

 

 

 

 

 

 



 

 

Method 2: 

Symmetrical test for  sin2)( f  

Symmetry Symmetrical test 

About x-axis 

    

 

 

About y-axis 

   

 

 

About origin 

   

 

 

 

 



 

 

Since r is symmetry at y-axis, then consider 𝜃 in the 

range [0, 900] and [2700, 3600] 

𝜃 0 30 60 90 270 300 330 360 

𝑟

= 2sin𝜃 
0 1.0 1.732 2 -2 -1.732 -1 0 

 

Then, plot the points on the diagram: 

 

 

 

 

 

 

 

 



 

 

Example 10:  Sketch the graph of cos
2

3
r  

Symmetry Symmetrical test 

About x-axis 

    

 

 

About y-axis 

   

 

 

 

About origin 

   

 

 

 



 

 

Since r symmetry at x-axis, consider 𝜃 in range  

[0, 1800] only. 

𝜃 0 30 60 90 120 150 180 

cos
2

3
r         

 

Then, plot the points on the diagram: 

 

 

 

 

 

 

 

 

 



 

 

Example 11:  Sketch the graph of 
22sinr   

Symmetry Symmetrical test 

About x-axis 

    

 

 

About y-axis 

   

 

 

 

About origin 

   

 

 

 

 



 

 

Since r symmetry at ____________, consider 𝜃 in 

range ____________ only. 

 

𝜃        

2sin2r         

 

Then, plot the points on the diagram: 

 

 

 

 

 

 

 

 



 

 

1.6 Finding the Intersection Points between Two  

Curves In Polar Coordinates 

Steps: 

1. Solve simultaneous equations between 2 curves and 

determine the intersection points. 

-if one of the curves is a line (i.e. k  ), we need to 

find intersection point for  .k     

2.  Check whether the curves intersect at the origin.  

- Test for 0.r   If   exist, it means the 2 curves 

intersect at the origin. 

 

 

Example 12:  

Find the points of intersection of the circle cos2r  

and  sin2r    for   0  

 

Example 13:  

Find the points of intersection of the curves cos
2

3
r

and 
3

2
  .  

 



 

 

Example 14: 

A polar equation is given as 2 5sinr   . 

a)   Show that the curve is symmetrical about the y-

 axis  and passes through the origin. 

b)   Make a suitable graph for 
0 090 90   . Use  the 

 table and the information in part a) to make a  full 

 sketch of the graph. 

c)   Find the intersection points of the graph and the 

 straight line 
11

12


   
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