|@uTM

SCJ2013 Data Structure & Algorithms

Insertion Sort

Nor Bahiah Hj Ahmad & Dayang
Norhayati A. Jawawi

OS]0,

ocw.utm.my @UTM

Insertion Sort

e Strategy
— Take multiple passes over the array

— Partition the array into two regions: sorted and
unsorted

e Take each item from the unsorted region and insert
it into its correct order in the sorted region

e Find the next unsorted element and insert it in
correct place, relative to the ones already sorted.

— Appropriate for small arrays due to its
simplicity

|@uTM

Insertion Sort Implementation [7 8 3 1 6]

void insertionSort(dataType data[])

{ dataType item; »
int pass, insertindex; [4] 0 o
for(pass=1; 3] 1 1
{ pass<n;pass++) 2] 3 3
item = data[pass]; [1] 8 8
insertindex = pass; 0] 7 7
while((insertindex >0) &&
{ (data[insertindex -1]>item)) insertindex =1 Item = 8
/llinsert the right item
data[insertindex]= Pass 1
data[insertindex -1];
insertindex --;
}
e e item=8 > data[0]=7. while loop
/linsert item at the right place N :
) condition is false, therefore
} data[1] will be assigned with
item = 8.

. OO
No of comparison =1

I ocw.utm.my

OPENCOURSEWARE

Insertion Sort Implementation [7 8 3 1 6]

Senarai
asal

[4] : 6 [T 7 6
Pass 2 s i P 1

o L % || 7 | -

] 7

[0] =

titilc_selitan " insertindex J
itern 3 item

Laluaan 2

Item to be insert is 3. Insertion point is from indeks O-
2, which is between 7 and 8.

Number of comparison = 2

Inspiring Creative and Innovative Minds

OPENCOURSEWARE

Insertion Sort Implementation [7 8 3 1 6]

Senarai

asal \

[4] 6 6 6
3] 8 8 8
21 8 7
1]) 7 3
1| 3 | 3 -

insertindex 3 2 1 0
item g

Pass 3

Item to be insertis 1. Insertion point is from indeks
0-3, which is between 3, 7 and 8.

Number of comparison =3

Inspiring Creative and Innovative Minds

Wl-al| &

OPENCOURSEWARE

Insertion Sort Implementation [7 8 3 1 6]

Senarai

asal \

41 8
B1_8 |
=1 7 |
L]
0]

titilc insditindex 4
iteiiem o

-1

1B

=W

W
9
9

Pass 4

Item to be insertis 6. Insertion point is from indeks 0-4,
which is between 1,3, 7 and 8. at index, item (6) > data[1]=3,
while loop condition is false and therefore data[2] is assigned
with value for item = 6.

Number of comparison =3

Inspiring Creative and Innovative Minds

ocw.utm.my @ UTM

Insertion Sort for Best Case [56 7 8 9]

Senarai

asal ﬁ

Best case for Insertion Sort i -

) k1| 8 8

can be achieved when data N -

Is almost sorted or totally 1) 8 6

sorted. Each pass will have 2 - =
1 comparison only. pE—
item 6

Pass 1

y

item=6 > data[0]=1. while condition is
false and data[1] is assignhed with item=6.

Number of Comparison=1

ocw.utm.my @_UTM

Insertion Sort for Best Case [56 7 8 9]

Senarai

asal
AN ltem=7 > data[1]=1.
41! © 9
] B 2 while condition become
{j . . false and data[2] is
1] 5 5 assigned with item=7.
R 2 Number of Comparison

Is 1

Pass 2

ocw.utm.my @_UTM

Insertion Sort for Best Case [56 7 8 9]

Senarail

asal \

M| 9 9 ltem=8 > data[2]=7.

3] 8 8 while condition

2]

nl 6 p become false and

o1] 5 S data[3] is assignhed
insertindex 3 Wlth Item:8

item 8

Number of

Pass 3 Comparison is 1

ocw.utm.my @_UTM

Insertion Sort for Best Case [56 7 8 9]

Senarai
asal

ltem=9 > data[3]=8. while

{:} z z condition become false
o1l - - and data[4] is assigned
1|6 6 with item=9.

[} Jl
n

0
& Number of Comparisonis 1

insertindex 4
item 9

Pass 4

ocw.utm.my @UTM

Insertion Sort Analysis — Best Case

There are 4 passes to sort array with elements [5 6 7 8 9].
In each pass there is only 1 comparison.
Example,

Pass 1, 1 comparison

Pass 2, 1 comparison

Pass 3, 1 comparison

Pass 4, 1 comparison

In this example, the total comparisons for an array with size 5
is 4. Therefore, for best case, the number of comparison is n-
1 which gives linear time complexity - linear O(n).

ocw.utm.my @_UTM

Insertion Sort Analysis — Worse Case

Worse case for insertion sort is when we have totally unsorted data. In
each pass, the number of iteration for while loop is maximum.

Pass 4, 4 comparison - (n-1)
Pass 3, 3 comparison -(n-2)
Pass 2, 2 comparison -(n-3)
Pass 1, 1 comparison - (n-4)

The number of comparisons between elements in Insertion Sort can be
stated as follows:

n—

1
—1
i=(mn—D+n—2)+....... +2+1= mn—1)

i=l

=An”)

ocw.utm.my

Insertion Sort Analysis

The number of comparisons is as follows:

n-1

Yi=n-D)+(n-2+.....+2+1=
=]

n(n-1)
2

=0n’)

ocw.utm.my

©UIM

InsertionSort — Algorithm Complexity

Insertion Comparisons: | Swaps
Best Case O(n) 0

Average Case |0O(n?) O(n?)
Worst Case O(n?) O(n?)

e Number of comparisons
— worst case : 1+2+...+(n-1), O(n?)
— best case : (n-1)* 1, O(n)

e Number of swaps
— worst case : 1+2+...+(n-1), O(n?)
— best case : 0, O(1)

ocw.utm.my @UTM

Summary and Conclusion

Insertion Bubble Selection
Comparisons:
Best Case o(n) O(n?) O(n?)
Average Case O(n?) O(n?) O(n?)
Worst Case O(n?) O(n?) O(n?)
Swaps
Best Case 0 0 O(n)
Average Case O(n?) O(n?) o(n)
Worst Case O(n?) O(n?) o(n)

Both Bubble sort and Selection sort performance do not depend on the
initial arrangement of data, however, insertion sort performance is
better for the best case.

15

ocw.utm.my @UTM

References

Nor Bahiah et al. Struktur data & algoritma
menggunakan C++. Penerbit UTM, 2005

Richrd F. Gilberg and Behrouz A. Forouzan,
“Data Structures A Pseudocode Approach
With C++”, Brooks/Cole Thomson Learning,
2001.

