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Recall: Methods involved: 

- Substitution of u 

- By parts 

- Tabular method 

- Partial fractions 

- Trigonometric substitutions 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

4.1 Integrals of Hyperbolic Functions 

 

 

Table of Integration for Hyperbolic Functions 

 

1. sinh coshxdx x C   

 

2. cosh sinhxdx x C   

 

3. 2sec tanhh xdx x C   

 

4. 2cosech xdx coth x C    

 

5. sec tanh sechx xdx hx C    

 

6. cos coth cosechx xdx echx C    

 

 

 

 

 

 

 

 

 



 

 

 

Example 1:  

Integrate the following hyperbolic functions using appropriate 

technique (definition, identities, etc) and method (substitution, 

by parts, tabular, etc). 

 

a) sinh 2 cosh3x xdx   

b) 
cosh

2 3sinh

x
dx

x



 

c) 
3sinh xdx   

d) cosh 2x xdx   

e) sinh cosh
2 2

x x
dx

   
    

   
  

f) 
2tanh secx h xdx   

 

 

 



 

 

 

4.2  Integration of Inverse Trigonometric Functions  

Integration formulae of the Inverse Trigonometric Functions 

Example 2 :  

1. Evaluate the following integrals  

 

 

2. Use partial fraction decomposition to solve  
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Differentiation Integration 

2

1

1

1
)(sin

x
x

dx

d


  Cx

x

dx







1

2
sin

1

 

2

1

1

1
)(cos

x
x

dx

d




  Cx

x

dx




 


1

2
cos

1

 

2

1

1

1
)(tan

x
x

dx

d




 Cx
x

dx





1

2
tan

1

 

2

1

1

1
)(cot

x
x

dx

d




  Cx

x

dx







1

2
cot

1

 

1

1
)(sec

2

1




xx
x

dx

d  
 



 Cx
xx

dx 1

2
sec

1

 

1

1
)(csc

2

1






xx
x

dx

d

 

 


  Cx
xx

dx 1

2
csc

1

 



 

 

Example 3 : Evaluate the following integrals  

 

 

 

3. Use completing the square technique to solve: 

 

4. By using substitution tan
2

x
t

 
  

 
 , show that 

12 1
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5 4cos 3 3 2

dx x
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4.3  Integration involving Inverse Hyperbolic Functions 

Integration formulae of the Inverse Hyperbolic Functions: 

Differentiation Integration 
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Example 4:  Solve the following: 

 

 

a) 

 

 

b) 

 

 

c) 

 

 

 

 

 

 

 

 



 

 

4.4 Further Applications of Integrations 

 

4.4.1 a) Arc Length in Parametric Form 

 

The length of the parametric curve ( ( ), ( ))x t y t  as t varies from 

0t  to 1t  is given by  

 

 

Example 5: 

Consider the curve given by x(t) = cos t, y(t) = sin t ,0 ≤ t ≤ π. 

Find the length of the curve.      (ans: pi) 

 

Its length is:        

 

 

 

 

 

 

 



 

 

4.4.1 b) Arc Length in Cartesian Form 

If we wish to find the length of a Cartesian curve which is the 

graph of a function  

( )y f x , a x b  ,  

we let  

( ) , ( ) ( ( )) ( )x t t y t f x t f x    

and we get  

'( ) 1x t   and '( ) '( ( )) '( ) '( )y t f x t x t f x  , 

therefore we have a simple formula for the length: 

 

 

Similarly, if we have a curve (y)x g , c y d  , we get 

 

 

 

 

 

 



 

 

Example 6: 

 

Find the length of the curve  

a) 
3

2 2
1

( 2) , 0 3.
3

y x x          (ans:12) 

b) 
3

2
2

( 1) , 1 4.
3

x y y           (ans:14/3) 

  

Example 7: 

Find the length of the arc of the parabola 2y x  from (0, 0) to 

(1, 1). 

 

Ans:  
 

 

 

 

 

 

 

 

 

 



 

 

4.4.2 Arc Length in Polar Coordinates 

 

The length of a curve with polar equation r = f(θ), a ≤ θ ≤ b, is 

 

 

 

Example 8: 

a) Find the length of the curve , 0 1.r       

 

 

 

 

b) Find the length of the cardioid 1 cos , 0 2 .r         
Ans: 8 

 

 

 

 



 

 

4.4.3   Area of Surface of Revolution in Cartesian Form 

 

Consider two cones, with one being a subset of the other; we 

can calculate the area of the region between the bases of the 

two cones. This region is called a frustum. 

 

 

Let the larger and smaller cones have heights and radii h2 and 

r2 and h1 and r1. 

 

    

Frustum 

 

h1 

h
2
 

R
1
 

R
2
 



 

 

It is clear that 2 2

1 1 1R r h   and 2 2

2 2 2R r h  . Therefore,  

area of larger cone, 2 2

2 2 2 2 2 2A r R r r h     , 

area of smaller cone, 2 2

1 1 1 1 1 1A r R r r h     . 

The area of the frustum, thus, 

2 1

2 2 2 2

2 2 2 1 1 1

2 2 2 2

2 2 2 1 1 1

2 2 1 1
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2    where  and 
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   

 

 

We can then use this formula to derive a formula for the area 

of the surface obtained by rotating the curve (x(t),y(t)), t1 ≤ t ≤ 

t2 about the x- and y−axes respectively: 

 

 

 

 



 

 

 

If the curve is the graph of a function y = f(x), a ≤ x ≤ b, then 

the area of the surface obtained by revolving the curve about 

the x-axis is 

 

and the area of the surface obtained by revolving the curve 

about the y-axis is 

 

If the curve is the graph of a function x = g(y), c ≤ x ≤ d, then 

the area of the surface obtained by revolving the curve about 

the x-axis is 

 

and the area of the surface obtained by revolving the curve 

about the y-axis is 

 

 

 

 



 

 

Example 9: 

 

a) Find the area of the surface obtained by rotating the 

curve 2 4 4y x  , 0 ≤ x ≤ 8, about the x-axis. 

 

  Ans:  

 

 

b) Find the area of the surface obtained by rotating the 

curve 21 2x y  , 1 ≤ y ≤ 2, about the x-axis. 

Ans:  

 

 

 

 

 

 

 

 



 

 

4.4.4 Area of a Surface of Revolution in Polar Form 

The areas of the surfaces generated by revolving the curve 

( ),r f a b     about the x- and y-axis are given by the 

following formulas: 

 

 Revolution about x-axis, ( 0y  ): 

2

22 sin
b

x
a

dr
S r r d

d
  



 
   

 
 

 

 Revolution about y-axis, 0x  : 

 
2

22 cos
b

y
a

dr
S r r d

d
  



 
   

 
 

 

Example 10: 

 

Find the area of the surface generated by revolving  

cos2 , 0
4

r


      

about the x-axis. 

 

   Ans: 2
2

2


    

 



 

 

Summary Formula for Area of Revolution: 

 

Type of 

Equation 

Revolve about x-axis Revolve about y-axis 

Parametric 

( ),

( )

x f t

y g t




    

( )y f x   

  
 

( )x g y   

 
 

 

Polar form 

( )r f    

2
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a
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d
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
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 
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4.5 Appendix 

 

1. Partial fraction decomposition. 

 

 

2. Integrations involving 
2Ax Bx C    

Expression Substitution 
2 2x k  tanx k   or sinhx k   

2 2x k  secx k   or coshx k   

2 2k x  sinx k   or tanhx k   
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