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INTEGRATION

4.1 Integration of hyperbolic functions

4.2  Integration of inverse trigonometric functions
4.3 Integration of inverse hyperbolic functions
4.4  Further Applications of Integrations

45  Appendix

4.6 References

Recall: Methods involved:
- Substitution of u
By parts
Tabular method
Partial fractions
Trigonometric substitutions
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4.1 Integrals of Hyperbolic Functions

Table of Integration for Hyperbolic Functions

1. [sinh xdx =coshx+C

2. [coshxdx =sinhx+C

3. [sech’xdx =tanhx+C

4. [cosech’xdx =—cothx +C

5. [sechxtanh xdx =—sechx+C

6. [cosechxcoth xdx =—cosechx+C
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Example 1:

Integrate the following hyperbolic functions using appropriate
technique (definition, identities, etc) and method (substitution,
by parts, tabular, etc).

f)

[sinh 2x cosh 3x dx

cosh X
2+3sinh X

J

[sinh® x dx

[ xcosh 2xdx

[sinh (gjcosh (gj dx

[/tanh x sech?x dx
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4.2 Integration of Inverse Trigonometric Functions

Integration formulae of the Inverse Trigonometric Functions
Example 2 :

1. Evaluate the following integrals

1
a) I tan ! x dx
0

-
S X
e

WP

2. Use partial fraction decomposition to solve
L x*-2x

J

dx .
0 (2x+1)(X* +1)
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Differentiation

Integration

d(sin_lx): L J- x =sin"'x+C
dx 1-x2 1-x°
-1 -1 —dx -1
—(C0os " X) = =cos ~x+C
X 1_X2 J‘\/:l.—XZ
— (tantx)= L _f dxzztan‘1x+c
X 1+x2 " l+x
d(cot_l X)= -1 J —dX2 —cottx+C
dx 1_|_X2 1+ X
d 1 dx 1
—(sect x) = =sec ™~ x+C
dx x|\ x* ~1 J.x\/xz -1
d -1 — dx 1
(csc ' x) = J =cscx+C
X x|V x2 -1 |7 [Xx® -1
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Example 3 : Evaluate the following integrals

ba 1:sz
i I;fz

2. a) j#
V) J'4+d;x2

3. Use completing the square technique to solve:

a) | i
\f—xz +2x+3
dx
b)
'[xz —2x+2

4. By using substitution t = tan (gj , show that

jizgtan‘1 }tan(ij +C
5+4cosx 3 3 2
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4.3 Integration involving Inverse Hyperbolic Functions

Integration formulae of the Inverse Hyperbolic Functions:

Differentiation Integration

d (Sinh_1 X) = L j i =sinh % x+C

dx 1+ X2 1+ x2

d 1 1 dx -1

—(cosh™ = x) = j =cosh ~x+C
X( ) VX% -1 x> —1

d(tanh_l X) = 1 I x =tanh ™1 x+C

dx 1— x?2 1-x2
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Example 4: Solve the following:

9 J- dx
\/3x2 +2
j dx
DT ax=3)2 41

dx

)
C j"\fz
x“+4x+3

2.Showthat_[ k. dx=ﬂix2+1+sinh_1x+C.

Vx2+1
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4.4  Further Applications of Integrations

4.4.1a) Arc Length in Parametric Form

The length of the parametric curve (x(t), y(t)) as t varies from
t, to t, is given by

=t

= o)+ or))ar

t=tp

Example 5:

Consider the curve given by x(t) = cos t, y(t) =sint,0 <t <.
Find the length of the curve. (ans: pi)
Its length is:
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4.4.1b) Arc Length in Cartesian Form

If we wish to find the length of a Cartesian curve which is the
graph of a function

y=1(x), a<x<b,

we let
x(t) =t, y(t)=f(x(®)="1(x)
and we get
x'(t) =1and y'(t) = f'(x(t))x'(t) = T (x),

therefore we have a simple formula for the length:

_ :::\/1 + (f'(x))%dx = f: V1 + (f7(x))2dx = E\h + (y)2dx

Similarly, if we have a curve x=g(y), c<y<d, we get

= J“i\/1+ () dy = f\/H(g(y) dy = f\/

y=c
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Example 6:

Find the length of the curve
1, o o
a) yzé(x +2)2,0<x<3.

3
b) x=§(y—1)2, 1<y<4,

Example 7:

(ans:12)

(ans:14/3)

Find the length of the arc of the parabola y* = x from (0, 0) to
(1, 1).




4.4.2 Arc Length in Polar Coordinates

The length of a curve with polar equation r =f(0), a< 8 <D, is

Example 8:

a) Find the length of the curve r=6, 0<6<1.

||||||

®
=
b
AN
™fT T
[}
'S
®
-
=]
=

1 1
S o o
T

%(\/E—Hn(l +V3)

b) Find the length of the cardioid r =1-cos8, 0< 8 < 2x.

Ans: 8




4.4.3 Area of Surface of Revolution in Cartesian Form

Consider two cones, with one being a subset of the other; we
can calculate the area of the region between the bases of the
two cones. This region is called a frustum.

 Frustum

Let the larger and smaller cones have heights and radii h, and
r, and hy and ry.
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It is clear that R, =+/r? +h? and R, =/r,> + h,?. Therefore,

area of larger cone, A, = zT,R, = zr,\r,> +h,? |
area of smaller cone, A = 7t,R = zrr?+h? .

The area of the frustum, thus,
A=A —A
= n[rﬂ/rj +h? —ryr?+ hlz}
=7(r,R, - 1R

=2zrR whereR=R,—R, and r = Wl

We can then use this formula to derive a formula for the area
of the surface obtained by rotating the curve (x(t),y(t)), t1 <t <
t, about the x- and y—axes respectively:

L
sxzjfznyumwanﬁ+wywnfdr
1

S
Sy = | 2meoyee )7 + ((0)at
1

gece
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If the curve is the graph of a function y = f(x), a <x <D, then
the area of the surface obtained by revolving the curve about
the x-axis Is

b
‘ Sx = L 2?Tf(x)\/1 + (f(x))%dx

and the area of the surface obtained by revolving the curve
about the y-axis is

‘ S, = J:Z'rrx\/l £ (f'(x))2dx

If the curve is the graph of a function x = g(y), ¢ <x <d, then
the area of the surface obtained by revolving the curve about
the x-axis Is

d
Sx = L ZWy\/I + (g’ () dy ‘

and the area of the surface obtained by revolving the curve
about the y-axis is

d
S, = I 2ng(y)\/l +(g’() dy
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Example 9:

a) Find the area of the surface obtained by rotating the
curve y° =4x+4, 0 <x <8, about the x-axis.

> o €

L]

e 16T

b) Find the area of the surface obtained by rotating the

curve Xx=1+2y*, 1 <y <2, about the x-axis.

R % (6565 - 17V17)
ns.
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4.4.4 Area of a Surface of Revolution in Polar Form

The areas of the surfaces generated by revolving the curve
r=f(0), a<@<b about the x- and y-axis are given by the
following formulas:

e Revolution about x-axis, (y>0):

2
b . , (dr
S, =]2zrsind,|r +(—j dé
a do

e Revolution about y-axis, x >0:

2
27rcosé, [r? +(£) dée
do

S:

y

QD — T

Example 10:

Find the area of the surface generated by revolving
r =+/c0s260, 0< 03%

about the x-axis.

0.35 e ———
0.3

v.as / \
0.2
0.15
6.1
0.08 \

0.2 2.4 0.5 0.8 1 Ans: 27w
C 27w —

NG
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Summary Formula for Area of Revolution:

Type of
Equation

Revolve about x-axis

Revolve about y-axis

Parametric

x = f(t),
y=9(t)

y="1(x)

x=g(y)

Polar form

r=1(6)

S _j27zrsm6? r +( rj dé
do




4.5 Appendix

1. Partial fraction decomposition.

S.No. | Form of the rational function Form of the partial fraction

¥, PXtqd 4%p = 3 £
(x—a) (x—b) x—a x-b

5 ‘ px+(q e + 5 —

i (x—a)? €50 (el

3 pt g+ A B e

L x=a)(x=Db)(x—=0) x—-a x-b x-c

4. X2 gy +r A 4 B - C
(—a)? (x—b) x—a (x—a)” x-=b

" X’ +gx+r A Bx+C

o 2 B + >
(x—a)(x +bx+c) x—a x*+bx+c
where x? + bx + ¢ cannot be factorised further

2. Integrations involving \/sz +Bx+C

Expression Substitution
/x2+k2 Xx=Kktan@ or x=ksinh@
N Xx=ksecd or x=kcosh@&
/kz_xz Xx=Kksin@ or x=ktanh@
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