OPENCOURSEWARE

SCJ2013 Data Structure & Algorithms

Binary Search Tree

Nor Bahiah Hj Ahmad

Inspiring Creative and Innovative Minds

ocw.utm.my @UTM

Binary Search Tree

A binary search tree has the following
properties:
— For every node n in the tree

e Value of nis greater than all values in n’s left
subtree.

e Value of nis less than all values in n’s right
subtree.

e Both left subtree and right subtree are also
binary search trees

Binary Search Trees

A

All key in
the left sub-
tree is less
than n

ocw.utm.my

All key in the right
sub-tree are
greater than n

10

g/ UNIVERSIT) TEOILOGH MALAYSA

Binary Search Tree

Not a Binary Search Tree Binary Search Tree

ocw.utm.my @UTM

Advantages of Binary Search Tree

One of the most fundamental algorithms in
Computer Science and the method of choice
in many applications.

e Stores keys in the nodes in a way that
searching, insertion and deletion can be
done efficiently.

* Simple Implementation

 Nodes in tree are dynamic

ocw.utm.my @UTM

Disadvantages of Binary Search

Tree
 The shape of the tree depends on the

order of insertions, and It can be
degenerated.

 When inserting or searching for an
element, the key of each visited node has
to be compared with the key of the
element to be inserted/found.

* Keys In the tree may be long and the run
time may Increase.

ocw.utm.my @_UTM

Binary search tree

Two binary search trees representing the same set:

— ‘/ _\'\
/’ ‘\' |] 'n
‘I\ 5 N /\
- & ™
/ \ (2)
" b A
|] \ e “\
\\ ___.-‘: S ..":\ N\ -
-\‘ _ //’ \\
/ / L 7)
/" ™~ \ _ \ ~ M A
(X 2 A VAN
\ 2/’| : 4 ; l 8 ‘j' /7 o \ N,
— ./ ./ | 5) (g \
" s)
— /
(4)
|
./

— Average depth of a node is O(log n);
— Maximum depth of a node is O(n)

ocw.utm.my @HTM

Pointer-based ADT Binary Tree

root

 Elements in a binary tree is
L? represented by using nodes.

* Nodes store the information
leftChildPtr |rightChildPtr Ina tree

Each node in the tree must
contain at least 3 fields
containing:

® jtem
BN BN ® Pointer to left subtree
® Pointer to right subtree
Need 2 declaration in a tree
. " . implementation:

1. Node declaration
2. Tree declaration

item

A pointer-based implementation of a
binary tree

©UTM

Node Implementation

leftPtr info rightPtr

—
Node representation \

typedef char ltemType;
struct TreeNode

{
itemType info; info, the node store char value.
TreeNode *left; left, pointer to left subtree
X m =
} TreeNode *right; Right, pointer to right subtree

ocw.utm.my

5

UTM

USIVERGIT TECMILOO MALAYSIA

Tree Implementation

class TreeType {
pu$I|c+ O
reeType();
~Tree¥yEe();
bool IsEmpty()const;
int NumberOfNodes()const;
void Retrieveltem(ltemType&,bool& found);
void Insertltem(ltemType
void Deleteltem(ltemType
void PrintTree() const;
private:
TreeNode * root;

}:

The tree class declaration above, declare the binary
serach tree using class TreeType.

The tree can be accessed using root, which is a pointer
to root of the tree.

©080

ocw.utm.my

|@uTM

USIVERSIT TECNICLOG MALAYSIA

Tree Operations

Among the tree operations in the class TreeType:
. Initialize tree , using constructor.

. Destroy tree, destructor.

. Check for empty tree, IsEmpty().

. Count number of nodes in the tree.

. Search item in the tree

. Insert item into a tree.

. Delete item from tree.

O N OO 1 B W DN B

. Print all item in the tree (Inorder traversal)

©080

I ocw.utm.my

ocw.utm.my @UTM

Tree Constructor

TreeType: :TreeType()
{ root = NULL; }

The constructor create an empty tree by
initializing root to NULL value.

Tree Destructor

TreeType: :~TreeType()
{ Destroy(root); }
voild Destroy(TreeNode *& tree)
{ IT (tree!=NULL)
{ Destroy(tree->left);
Destroy(tree->right);
delete(tree);

}

Destructor will destroy all the nodes in the tree

Function Destroy() is implemented recursively whereby the
function will destroy all nodes in the left subtree first,

followed by destroying nodes in the right subtree. Lastly, the

root node will be destroyed. (© 000

ocw.utm.my

Step 2

Destroying a tree using destructor

1

Destroying
third node

4 tree

Destroying second node

Step 1
1 [ree
M)
A A
’ @\ c/\
o
A 1) (v)
iﬁ{% ‘\Y/l
Destroying first node
Step 3

Destroying
sixth node,
rpot

tree

Destroying
fifth node

s Destroying
fourth node

Inspiring Creative and Innovative Mi

nds

ocw.utm.my @UTM

I sEmpty()Function

* Binary Search Tree is Empty when the root has
NULL value.

* Function IsEmpty() will return True if root is NULL
and will return False if the root is not NULL.

bool IsEmpty() const
{ 1T (root == NULL)
return True; // tree 1s empty
else
return False; // tree 1s not empty

ocw.utm.my @UTM

Insert Node Into a Binary Search Tree

The insert operation will insert a node to a tree and the new
node will become leaf node.

Before the node can be inserted into a BST, the position of the
new node must be determined. This is to ensure that after
the insertion, the BST characteristics is still maintained.

Steps to insert a new node in BST
1. Find the position of the new node in the tree.
2. Allocate new memory for the new node.
3. Set NULL value to left and right pointer.
4. Assign the value to be stored in the tree.

ADT Binary Search Tree: Insertion

root | ¢
root
root | ¢ /f Jimmy " .\\
Jimmy Fizzi Liana
Insert Jimmy to empty tree

Hazim II/

Insert Hazim to non-empty tree

root | ¢

’ Jimmy Q

Fizzi Q Liana

\

Hazim Node with value Hazim
becomes a leaf.

ocw.utm.my @ UM

Insert new node Implementation

voild TreeType::Insertltem(ltemType 1tem)
{ Insert(root, i1tem);}

void Insert(TreeNode*& tree, ltemType 1tem)
{ iIT (tree == NULL) { // base case

tree = new TreeNode;

tree->right = NULL;

tree->left NULL ;

tree->i1nfo 1tem;

else 1T (item < tree->i1Info)
Insert(tree->left, 1tem);
else
Insert(tree->right, i1tem);

.r""s.\
3
% i
\N - _‘,/'

UTM

Insert 5, 10, 8, 3,4 and 15 in a BST

7 N
tree 0——»@ .__”\j /"
tree |"»._
tree @
Empty tree Insert 5 Insert 10
o> . o>)
\i‘/ /\j)< .——){\ﬁ\,
tree tree (3 AN tree ~ —X
LN \-1 (_)/ \3) N\
/1 0\- / ' A
/* g N ra
\8) (
- ¥
Insert 8 Insert 3 Insert 4

|nsert 5,10, 8, 3,4, 15 to a tree
tree .—'®\
3,

Finally, Insert the last node; 15.

Time complexity = O(height of the tree)

Inspiring Creative and Innovative Minds

ocw.utm.my @HTM

Searching from BST
(20

(&) (40
(5 (15
10 (18)

 From the figure, if we search for value 20, then we are
done at the root.

e |f we search for a value < 20, then searching will be at the
left subtree.

e If we are searching for a value > 20, then searching will be
at the right subtree.

ocw.utm.my @UTM

Searching from BST
<>,

(53 >
&S >,
T e

Search value 10 from the tree
1. Compare 10 with value 20 (at root), go to left subtree.
2. Compare 10 with 8, go to right subtree.
3. Compare 10 with 15, go to left subtree.
4. Compare 10 with 10, value is found.
Time complexity = O(height of the tree)
=0(4)

ocw.utm.my (}t”mﬂ

B e AR ot e

Searching: Retrieveltem() function

void TreeType:: Retrieveltem
(ItemType& item,bool& found)
{ Retrieve(root, item, found);}

vold Retrieve (TreeNode* tree,
ItemType& item,bool& found)
{ if (tree == NULL) // base case 2
found = false;
else if (item < tree->info)
Retrieve (tree->left, item, found);
else if (item > tree->info)
Retrieve (tree->right, item, found);
else { // base case 1
found = true;

}

ocw.utm.my @UTM

Delete a Node from a Tree

e When a node is deleted, the children of the
deleted node must be taken care of to ensure
that the property of the search tree is
maintained.

 There are 3 possible cases to delete a node in
a tree:

1. Delete a leaf
2. Delete a node with one child

3. Delete a node that has two children

|@uT™
Delete a Leaf Node

The node to be deleted is a leaf

e Set the pointer in N’s parent to NULL and delete
it immediately

e Example : Delete leaf Node: Z

J

._

TN TNO(I/ ;
\
After delete Z
Before delete

l e|ete a Node With One Child

Delete node R.
Adjust a pointer from the parent to bypass that node

N
o
Y@

N\

Before delete R After delete R

Inspiring Creative and Innovative Minds

ocw.utm.my @UTM

Delete a Node With Two Children

To delete a node N that has two children.

e Locate another node M that is easier to delete
M is the leftmost node in N’s right subtree
e M will have no more than one child

 M’s search key is called the inorder successor of
N’s search key

e Copy theitemthatisin Mto N
e Remove the node M from the tree

ocw.utm.my

Delete a Node with 2 Children

Delete Q that has 2 children

before delete

""@ replace with smallest
value from right

TNod -~

after delete

ocw.utm.my @HTM

Delete a Node With 2 Children

Delete 2 with 2 children.

— Replace the key of that node with the minimum element
at the right subtree.
— Delete the minimum element that has either no child or

only right child because if it has a left child, that left child
would be smaller and would have been chosen.

Delete|2 _
Replace with 3

and delete
node 3

| OPENCOURSEWARE

Print Values in BST

void TreeType: :PrintTree ()

{
}

void Print (TreeNode* tree)

{

Print (root) ;

if (tree != NULL) {
Print (tree->left) ;
cout << tree->info;
Print (tree->right) ;

}

Function PrintTree() print all values in BST using inorder
traversal. Print() function will be called recursively, starting
from left subtree, root and right subtree.

Inspiring Creative and Innovative Minds

ocw.utm.my

Inorder traversal of BST

Print out all the keys in sorted order

l { 7))] 20)
\,/ ./ _/ _/
| N SN /; ;\1
p. | K
y \j/’ \‘_/'
N
L9
__/

Inorder: 2, 3,4, 6, 7,9, 13, 15, 17, 18, 20

ocw.utm.my @UTM

The Efficiency of Binary Search Tree
Operations

The maximum number of comparisons required by any
binary search tree operation is the number of nodes along

the longest path from root to a leaf, which is the tree’s
height.

The order in which insertion and deletion operations are
performed on a binary search tree affects its height.

Insertion in random order produces a binary search tree
that has near-minimum height.

Insertion in sequential order produces a binary search tree
that is unbalanced and has height = O(n).

ocw.utm.my @_UTM
The Efficiency of Binary Search Tree

Operations

Operation Average case Worst case

Retrieval O(log n) O(n)
Insertion O(log n) O(n)
Deletion O(log n) O(n)
Traversal O(n) O(n)

ocw.utm.my @ UTM

Summary and Conclusion

* Binary search trees come in many shapes. The shape
of the tree determines the efficiency of its operations

 The height of a binary search tree with n nodes can
range from a minimum of Olog,(n + 1) to a maximum

of n.

* The efficiency of binary search tree operations:
Operation Average case Worst case

Retrieval O(log n) O(n)
Insertion O(log n) O(n)
Deletion O(log n) O(n)

Traversal O(n) O(n)

ocw.utm.my @UTM

References

 Nor Bahiah et al. “Struktur data & algoritma
menggunakan C++”. Penerbit UTM. 2005.

* Frank M. Carano, Janet J Prichard. “Data
Abstraction and problem solving with C++”
Walls and Mirrors. 5t edition (2007). Addision

Wesley.

