OPENCOURSEWARE

SCJ2013 Data Structure & Algorithms

Queue

Nor Bahiah Hj Ahmad & Dayang
Norhayati A. Jawawi

Inspiring Creative and Innovative Minds ,

ocw.utm.my @UTM

Course Objectives

At the end of the lesson students are expected to be
able to:

 Understand queue concepts and applications.

 Understand queue structure and operations that can
be done on queue.

 Understand and know how to implement queue

using array and linked list : linear array, circular array,
linear link list and circular list.

SCJ 2013/SCK2243 October2010 bahiah@utm.my

UTM
I@“""'”"‘“"‘“Introduction to Queue

* New items enter at the back of the queue.
e |tems leave from the front queue.
 Implement First-in, first-out (FIFO) property.

— The first item inserted into a queue is the first
item to leave.

e Queue is important in simulation & analyzing the
behavior of complex systems

ocw.utm.my @UTM

Queue Applications
e Real-World Applications

— Cashier lines in any store
— Check out at a bookstore
— Bank / ATM
— Call an airline
e Computer Science Applications
— Print lines of a document
— Printer sharing between computers
— Recognizing palindromes
— Shared resource usage (CPU, memory access, ...)

e Simulation

— A study to see how to reduce the wait involved in an
application

|©@UTM

‘Queue Implementation

Remove/ Add/
Dequeue A B C €——— Enqueue
Front Back

Basic Structure of a Queue:
eData structure that hold the queue
front
sback

|@uTM

“Queue Implementation

Add/
A B C D <€—Enqueue
! 1
front back

Insert D into Queue (enQueue) : D is inserted at rear

Remove/
Dequeue A — B C D ‘
front back

Delete from Queue (deQueue) : A is removed @050

I ocw.utm.my

ocw.utm.my @ UTM

Queue Implementation

Implementation:
— Array-based

e Linear
e Circular
— Pointer-based : Link list

e Linear

e Circular

ocw.utm.my ®©UTM

Queue: Linear Array Implementation

e Number of elements in Queue
are fixed during declaration.
 Need ISFull() operation -
to determine whether a queue
is full or not. createQueue()
destroyQueue()
e Queue structure need at least iIsEmptyQ);
3 elements: IsFullQ);
. . enQueue();
1) Element to store items in deQueue();
Queue getFront();

] getRear();
2) Element to store index at front

3) Element to store index at back
gueue

|@UIM
Queue Abstract Data Type

ADT queue operations
— Create an empty queue
— Destroy a queue
— Determine whether a queue is empty
— Add a new item to the queue
— Remove the item that was added earliest
— Retrieve at Front
— Retrieve at Back

©080

Queue Declaration

class Queue
-
{ private:
int front; // index at front
int back; // i1ndex at rear queue
char 1tems|[size]; //store i1tem in Q

i createQueue()
public: destroyQueue()
Queue(); // Constructor - create Q iISsEmpty();
~Queue(); // Destructor - destroy Q iIsFull();
bool isEmpty(); // check Q empty gngueuegg;
_ g eQueue();
bo?l isFullQ); 7/ check_Q full_ getFront():
void enQueue(char); // insert into Q getRear();

void deQueue(); 7/ remove item from Q
char getFront(); // get i1tem at Front
char getRear(); // get item at back Q

©UTM

S/ USIVERSITI TEXNCLOGH MALAYSIA

CreateQueue() operation

e Linear Array implementation
 Constructor:
— front and back are indexes in the array

— Initial condition: front =0 and back = -
Queue: :Queue()

{ front = O;
back = -1;
¥
1tems
KN EN ------
front back o maxQ-1

Initial state for a queue linear array

ocw.utm.my @UTM

Queue Operations

e Destroy Queue destructor : All elements in the queue
will be disposed.

queue: :~queue()
{ delete [] 1tems; }

e Check whether a queue is empty
— Queue Empty Condition : back < front

bool queue::isEmpty()
{ return bool(back < front); }

Queue Operations
EN EX lll-m EN

front ba%k o1 2 .. size
slzel

Check whether a queue is Full
— Queue Full Condition : back = size -1

bool queue::iskFull()
{ return bool(back == size — 1); }

— Cannot insert any more item into a queue, when
the queue is full.

ocw.utm.my @ UIM

Queue Operations

e |nsert into a queue (enQueue)

* Increment back
* Insertitemin 1tems][back]

void queue: enQueue(char 1nsertltem)
{ 1t (isFull())
cout<< "\nCannot Insert. Queue 1s fTull!";
else
{ //1nsert at back
back++;
items[back] = Insertltem;
} /7 end else 1f

}

- oowutmmy ©UIM
enQueue operations for a queue with

size =5
1tems
ueus TVRUSLS: Ir IEW -----
front back
myQueue.enQueue(“A%); items
KN KN II---I
front back
myQueue.enQueue(“B?); items
KN EN IIE--I
front back
myQueue .enQueue(“C?);
1tems
KN EN ﬂﬂ...
front back

ocw.utm.my

Queue operations

1tems

front back

e |tem at front and back can be retrieved from queue

char queue:: getFront() // get i1tem at Front
{ return i1tems|[front] ; }

char queue::getRear() // get i1tem at Back
{ return i1tems[back] ; }

cout << myQueue.getFront(); //output is A
cout << myQueue.getRear(); // output is C

ocw.utm.my @ UIM

Queue operations

e Delete from a queue (deQueue)

* Increment front

void queue: :deQueue()
{ 1T (isEmpty())
cout<< '"\nCannot remove i1tem. Empty Queue!';
else
{ //retrieve i1tem at front
deletedltem = i1tems[front];
front++;
} // end else 1f

}

- oowutmmy ©UIM
deQueue operations

myQueue .deQueue(); items
deletediten AN [HERE -ﬂ--I
A front back

myQueue .deQueue(); items

deletediten [NENN [NENN -----

B front back

myQueue .deQueue(); items

deletediten [NENN [NENN -----

C front back

myQueue .deQueue(); Cannot_remove it?m.
Queue is Empty with back < front

 ocwutmmy ®UTM

Queue operations - enQueue

myQueue.enQueue(“D”); items
EN EN ---ﬂI
front back

myQueue.enQueue(“E”); i tems

front back

myQueue .enQueue(“F?); items

front back
Cannot Insert F, even though there are empty spaces

in front of the queue array.
Currently, Queue 1s FULL with back == size — 1.

ocw.utm.my @_UTM

Linear Array Implementation - Drawback

Problem: Rightward-Drifting:

— After a sequence of additions and removals, items will
drift towards the end of the array

— Even though, there are empty spaces in front of the
qgueue array, enQueue operation cannot be performed
on the queue, since back =size - 1.

Rightward
drifting

front back L 1

20

Rightward Drifting Solutions

To optimize space and to solve rightward drifting:
1. Shift array elements after each deletion.

myQueue .deQueue(); items
deletedltem - n -ﬂ---
A front back

Shlft array elements
to front array

1tems

front back

However, shifting is not effective and dominates
the cost of the implementation.

Rightward Drifting Solutions

2. Use a circular array: When front or back reach the
end of the array, wrap them around to the
beginning of the array.

Ciroutar aray || [. Hl

front back

MAX QUEUE -1

In the figure, to insert F in the queue, F will be
inserted at the front queue and restart again at
index 0.

ocw.utm.my @UTM

Queue Circular Array

 Problem:

— front and back no longer can be used as
condition to distinguish between queue-full
and queue-empty

e Solution:

— Use a counter, named count

—count == 0 means empty queue

—count == MAX_QUEUE means full queue

e Disadvantage
— Overhead of maintaining a counter or flag

ocw.utm.my @UTM

Circular Array Implementation

— Queue declarations
const 1nt MAX QUEUE = maximum-size-of-queue;
QueueltemType 1tems [MAX QUEUE];

int front; MAX_ QUEUE = 8 back front
int back; count =0 7 \ 0
int count 1
— Initial condition: 6
e count = 0, front = 0O,
 back = MAX_QUEUE — 1 c
2
— The Wrap-around effect is 4 3
obtained by using modulo arithmetic Empty circular
queue.

(%-operator)

24

ocw.utm.my @UTM

Circular Arrays Implementation

— Insertion

* Increment back, using modulo arithmetic
MAX_QUEUE =8

* [nsert item count = 4
° front
Increment count , 0 Y
back = (back + 1) % MAX QUEUE;
1tems[back] = newltem; 20 1
++count; 6 .
After insert 20, 45, 51 and 51,
76 sequentially into circular ~ ° 76
ueue
q 4 ;\ Back

25

|@uTM

USIVERSIT) TEORLOGH MALAYSIA

Circular Arrays Implementation

Deletion
Increment_front. using Wioieigiaialal
modulo arithmetic count = 1
front = (front + 1) % MAX_QUEUE; 7 0
--count;
1
6
After delete 20, 45 and
51 sequentially from ,
: 5
circular queue 76
4 T \ 3
Front
Back Oataer

I ocw.utm.my

ocw.utm.my @UTM

Summary and Conclusion

Queue can be implemented using linear array and circular
array.

Structure of queue linear array is the items that hold the
array, front and back.

Insertion happens at back, while deletion happens at front.

Drawbacks of queue linear array is that it will lead to
rightward drifting problem after sequence of deletion and
insertion is performed on the queue.

Queue circular array can be perform in order to solve the
problem, whereby after front or back reach the end of the
array, it will wrap around to the beginning of the array.

The Wrap-around effect is obtained by using modulo
arithmetic (%-operator)

