SCJ2013 Data Structure & Algorithms

Queue - Linked List
Implementation

Nor Bahiah Hj Ahmad

ocw.utm.my (:EIJJ:QQ

Queue Implementation Link List

Pointer-Based Implementation
e Can be implemented using linear linked list or circular
linked list.
e Linear linked list
Need two external pointer (front and back)

[h s a [H—[bv [+ i o[t
0

front

e Circular linked list
Need onle one pointer, that point at back.

h sLa [b [i [t

back

Queue Implementation Link List

Need 2 structure
e Declaration of the node _
struct nodeQ { createQueue()
char item- destroyQueue()
* et - ISEmptyQ);
nodeQ next; enQueue():
} deQueue();
. tF t();
 Declaration of the queue ROy
class queue
{public:

nodeQ *backPtr, * frontPtr;
// operations for queue

ocw.utm.my @ UTM

Queue Implementation Link List

createQueue()
backPtr = Null; frontPtr = NULL;

destroyQueue()

Destroy the whole nodes in the queue
nodeQ *temp = frontPtr;
while (temp){
frontPtr = temp->next;

delete temp; temp=frontPtr; }

1ISEmpty ()

backPtr == Null && frontPtr == NULL

ocw.utm.my @UTM

Insert to a linear queue

Inserting a new node at the back needs 3 pointer
changes

Change next pointer in the new node
Change the next pointer in the back node
Change the external pointer

wnN =

e Special case:
e If the queue is empty

ocw.utm.my @UTM

— -

Queue Implementation: Linear Linked
List
Linear linked list with 2 external pointers
1. Create a new node -> newPtr -\ i
2. Insert to an empty queue newptr !lz
newPtr -> next = NULL 0

frontPtr=backPtr = newPtr i
element
backPtr

3. Insertion to a non-empty queue
newPtr -> next = NULL
backPtr -> next = newPtr
backPtr = newPtr

frontPtr backPtr newPtr

T -\

——*.—*II—*..-

B e AR ot e

ocw.utm.my @UTM

Delete from Linear queue

e Deletion
— Delete from the Front
— Only one pointer change is needed
— Special case:
— If the queue contains one item only

e Deletion Code
tempPtr = frontPtr
frontPtr = frontPtr -> next
tempPtr -> next = NULL

delete tempPtr ;
frontPtr backPtr

ocw.utm.my

Delete from Linear queue

If the queue contains one item only,

frontPtr
tempPtr

20
b
element
backPtr After deletion, backPtr
has nowher int!! frontPtr
Need to add this statement: -

If (frontPtr)
backPtr = NULL;

tempPtr

backPtr

©

UTM

B e AR ot e

Circular Queue Implementation

Circular linear linked list with one external pointer

UTM

B e AR ot e

— Insertion

* Into an empty queue
NewPtr -> Next = NewPtr newPtr

BackPtr = NewPtr
Inserted

* |Into a non-empty queue
NewPtr -> Next = BackPtr-> Next
BackPtr -> Next = NewPtr
BackPtr = NewPtr

backPtr

Inserted backPtr

f’.

element

ocw.utm.my @HTM

Circular Queue Implementation

Deletion

e From a one-node (one item) queue
deletePtr = BackPtr -> Next
If (deletePtr = BackPtr)
BackPtr = NULL
delete deletePtr BackPtr

30

Deleted
element

10

ocw.utm.my @HI__

Circular Queue Implementation

Deletion

* From a non-empty, more than one item queue
deletePtr = BackPtr -> Next
BackPtr -> Next = deletePtr -> Next
delete deletePtr

T deleteptr BackPtr [

Deleted
element

- ES ECH | .|

ocw.utm.my @UTM

Array Implementation vs Linked Lists
Implementation

 Implementation
— Array

e Prevents the enqueue operation from adding an item
to the queue if the array is full.

 No overhead of pointer manipulation

— Linked list
* No size restriction on the enqueue operation
* More efficient, and flexible
e More complicated than ADT List

12

ocw.utm.my @UTM

Summary of Queue

— Operations are defined in terms of position of data items
— Position is restricted to the front and back of the queue.
— Operations:
e Create:
— Creates an empty ADT of the Queue type
 ISEmpty:
— Determines whether an item exists in the ADT
* enqueue:
— Inserts a new item in the Back position
 dequeue:
— Deletes an item from the Front position
* peek:
— Retrieves the item from the Front position

ocw.utm.my @UTM

Queue and Stack

e Stacks and queues are very similar

e Operations of stacks and queues can be paired
off as
e createStack and createQueue
e Stack ISEmpty and queue ISEmpty
 push and enqueue
e pop and dequeue
e Stack getTop and queue getFront

14

ocw.utm.my @UTM

Summary and Conclusion

e Queue is a data structure that implement
FOFO concept (First In First OUT).

e Queue can be implemented using array or
linked list.

— Queue linear array has rightward drift problem
and can be solved using circular array
implementation.

— Queue linked list can be implemented linearly or
circular. The advantage is the number of nodes
are not limited to the queue size and can be
created dynmically.

ocw.utm.my @UTM

References

 Nor Bahiah et al. “Struktur data & algoritma
menggunakan C++”. Penerbit UTM. 2005.

* Frank M. Carano, Janet J Prichard. “Data
Abstraction and problem solving with C++”
Walls and Mirrors. 5t edition (2007). Addision

Wesley.

