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Chapter Outline 
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5.1 

Introduction to  

the concept of 

frequency 

response 



The Concept 
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• Sinusoidal inputs to a linear system generate sinusoidal 
responses of the same frequency. 

• However, they differ in amplitude and phase angle from 
the input. 

• Sinusoids can be represented as complex numbers called 
phasor. 

 

 where M1 and 1 are the amplitude and phase angle. 

• Thus, the system can also be represented by a complex 
number so that the product of the input phasor and the 
system yield the phasor of the output. 
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• The block diagram: 

 

 

 

 

 

 

 

 

 

• The output sinusoid is found by multiplying the input and 
the system. 

 

The Concept [2] 
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The Concept [3] 
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Thus 

 

 

 

 

 

• The combination of the magnitude and phase frequency 
responses is called the frequency response,  

 

• The frequency response of a system with transfer function 
G(s) is  
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Plotting Frequency Response 
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• For a given transfer function: G(s) = 1/(s+2) 

 

 

 

 

• One way to plot the Frequency response is by using a 
separate magnitude and phase plots. 

a) Magnitude curve: decibel (dB) vs log  [dB = 20 log 
M] 

b) Phase curve: phase angle vs log  
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• Separate plots (magnitude and phase vs log ). 
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5.2 

Introduction to 

simple open loop 

Bode plot 



Bode Plots 
• The log-magnitude and phase frequency response curves as a 

function of log  is called Bode plots. 

• Bode plot is a technique for analyses and design of control 
systems. 

• Consider a transfer function 

 

• The magnitude frequency response 

 

 

• Converting into dB 
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Bode Plots 

• The phase frequency response 

 

 

• If we know the magnitude and phase responses of each 
term, total frequency response can be obtained by algebraic 
sum of each term. 

• The frequency response can be simplified by utilizing 
straight-line approximations.  

• Therefore, total frequency response can be obtained by 
graphic addition.  
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5.3 

Bode Plot –  

overall plotting 



Bode Plot 

 Constant K : G(s)=K 

 Zeros at origin: G(s)=s 

 Poles at origin: G(s)=1/s 

 Zeros at real-axis (s-plane): G(s)=(s+a) 

 Poles at real axis (s-plane): G(s)= 1/(s+b) 



Bode Plots - Constant K 

 

• G(s) = K 
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Bode Plots - Zeros at origin 

• G(s) = s  (Zero at origin) 

 

 

 

 

• At  = 1, gain = 0 dB. 
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Bode Plots- Poles at origin 

• G(s) = 1/s (pole at origin) 

 

 

 

 

 

 

• At  = 1, gain = 0 dB. 
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Bode Plots – Zeros at real axis  
• For  

 
 
 
 

• At   a, 
 
 

• At  = a, 
 
 

• At   a, 
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 The low-frequency 
approximation is called the 
low-frequency asymptote. 

 The frequency,  = a is known 
as break frequency because it 
is the break between the low- 
and high-frequency 
asymptotes. 

 The high-frequency 
approximation is called the 
high-frequency asymptote. 

 



Bode Plot- magnitude plot (Zeros) 

18 

low-frequency asymptote 
  a 

high-frequency asymptote 
  a 

break-frequency 
 = a 



Bode Plot- Phase plot (Zeros) 
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low-frequency asymptote 

high-frequency asymptote 

asymptotic approximation 



Bode Plots – Poles at real axis 

• For  
 
 
 
 

• At   a, 
 
 

• At  = a, 
 
 

• At   a, 
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Bode Plots- Poles 
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low-frequency asymptote 

high-frequency asymptote 

break-frequency 



Bode Plots- Poles 
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low-frequency asymptote 

high-frequency asymptote 

asymptotic approximation 



Exercise 1 

• Sketch the Bode plots for the system shown where 
 

 

 

 

 

 

 

 

 

• Use the command in MATLAB to get the actual bode plot. 
(use the command ‘bode(G)’) 
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Bode Plots: Second Order 
• For  

 

 

 

 

 

 

 

• At low frequency,   n, 

 

• At high frequency,   n,  
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Bode Plots: Second Order 
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low-frequency asymptote 

high-frequency asymptote 

break-frequency 



Bode Plots: Second Order 
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low-frequency asymptote 

high-frequency asymptote 

asymptotic approximation 



Bode Plots: Second Order 
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Example 2 

• Sketch the Bode plot for G(s) for the unity feedback system 
shown below where 

 
 

 

 

 

 

 

 

 Obtain the actual bode plot using MATLAB. 
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5.4 

Analysis of  

Bode Plot 



Stability via Bode Plots 

• Stability of a closed-loop system can be determined using Bode 
plot of an open-loop system. 

• A closed-loop system is stable if the magnitude of the OL 
system is less than 0 dB (unity gain) at the frequency where the 
phase is ±1800. 

• Example :  

• Use Matlab to get the actual plotting 

• Determine the range of K within which the unity feedback 
system is stable. Let G(s) = K/[(s+2)(s+4)(s+5)]. 

• Solution: Normalise 

 

 

• For convenience, choose K = 40. 30 































1
5

1
4

1
2

)40(

)(
sss

K
sG



31 

The bode plot when K = 40 
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Solution 3 

• With K = 40, at phase -1800,  = 7 rad/s, magnitude = -20 dB.  

• The system is stable at K = 40. 

• Therefore, an increase in gain of 20 dB (20 log 10) is possible 
for stability. 

•  Hence the gain for stability is 400 (40 x 10). 

 

• Range for stability: 0 < K < 400. 

 

• Actual results:  = 6.16 rad/s, K = 378. 
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Gain and Phase Margins 

• Gain margin and phase margin are two quantitative measures 
of how stable a system is. 

• Systems with greater gain and phase margins can withstand 
greater changes in system parameters before becoming 
unstable. 

• Gain margin, GM is the change required in open-loop gain at -
1800 of phase shift to make the closed-loop system unstable.  

• The gain margin is found by using the phase plot to find the 
gain margin frequency, GM where the phase angle  is -1800.  

• At this frequency look at the magnitude plot to determine the 
gain margin which is the gain required to raise or decrease the 
magnitude curve to 0 dB. 
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• Phase margin, M is the change required in open-loop 
phase shift to make the closed-loop system unstable.  

• The phase margin is found by using the magnitude curve to 
find the phase margin frequency, M where the gain is 0 
dB.  

• At this frequency, the phase margin is the difference 
between the phase value and -1800. 
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Gain and Phase Margins 

35 



Example 

Consider a unity feedback system : 

                            G(s) = 200/[(s+2)(s+4)(s+5)]  

Using Matlab, find the gain margin and the phase margin from 

the bode plot. 

 SOLUTION:  

• GM = 7 rad/s. GM = 6.02 dB. 

• M = 5.5 rad/s. M is = 1800 – 1650 = 150. 

• Note that: - any additional zeros and/or poles will change the 
original bode plot. This can be clearly observed by using the 
command ‘sisotool(G)’ and adding zeros/poles from the menu. 
Resulted in the changes in GM and M, hence the stability 
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Bode plot of the system : 
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Relation between Closed-Loop Time and Closed-

Loop Frequency Responses 
• There is a relationship between closed-loop time and closed-

loop frequency responses. 

• Consider the second order feedback control system: 
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• By plotting the closed loop bode plot and looking at the 
magnitude-log plot, we can measure: 

  - The maximum magnitude value of Mp, 

 

 

 

  - The frequency at the Mp , 

 

 

• Therefore, we can deduce that the maximum magnitude is 
directly related to damping ratio and overshoot of a system. 
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• Bandwidth, BW is the frequency at which the magnitude 
response curve is -3 dB. 

• Relationships between the bandwidth and the time 
response specifications: 
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Exercise 3 

• Given a unity feedback system with G(s) = K/[s(s+1)(s+2)]. 
Using Matlab, find the system gain and phase margins, 
maximum amplitude and bandwidth for K = 1 and 10. 

 ANSWER 

 Gain and phase margins are obtained from the open-loop 
Bode plot. [prove using MATLAB] 

 Maximum amplitude and bandwidth can only be obtained 
with the closed-loop Bode plot. [prove using MATLAB] 
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K = 1 K = 10 

Gain margin 29.5 dB 9.5 dB 

Phase margin 780 250 

Maximum amplitude 0 dB 7.3 dB 

Bandwidth 0.26 rad/s 2 rad/s 

Hard to find 
 manually 



Relation between Closed- and Open-Loop 

Frequency Responses 

• We do not have an easy way of finding the closed-loop 
frequency response from which we could determine Mp and 
thus the transient response. 

• We can sketch the open-loop frequency response (Bode plot) 
but not the closed-loop frequency response. 

• One of the techniques to obtain the closed-loop frequency 
response from open-loop frequency response is Nichols Chart 
which is not covered in this module. 
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Damping Ratio and Phase Margin 

• The relationship between the phase margin and the 
damping ratio can be derived and given by: 

 

 

 

 

 

43 

42

1

412

2
tan







 
M

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 1 2 3 

P
h
as

e 
M

ar
g
in

 (
d
eg

re
e)

 

Damping ratio 



• The steady state error can also be found from the open 
loop bode plot and using the same formula from the time 
domain analysis 

• For a unity feedback system, the steady state error can 
be further simplified. 
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• Hence, the static error constants are related to the input 
test signal.  

• For a unit step input, the steady state error is given by, 

 

 

 

 

 

 

• where, KP is the position error constant, given by 
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• For a unit ramp input, the steady state error is given by, 

 

 

 

 

 

 

 

• where, Kv is the velocity error constant, given by 
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• For a parabola input, the steady state error is given by, 

 

 

 

 

 

 

 

• where, Ka is the velocity error constant, given by 
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• For a unity feedback system with an open-loop transfer 
function G(s), the steady-state errors  can be found identify 
the system type and using the respective formula: 

 

 - for system type 0:       

 

 - for system type 1:   

 

 - for system type 2:    
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Steady-state Error from 

Frequency Response 
• By identifying the system type from the open-loop Bode plot, 

the steady state error can be easily found as follows,  
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Steady-state Error from 

Frequency Response 

50 

20 log M 



Example 
• Find the steady-state error for the following Bode plots: 
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Example 
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Conclusions 

We have covered 

The graphical analysis using Bode Plot 

The stability analysis by looking at Gain and Phase 
Margins 

Some relationships between open loop and 
closed loop systems’ information 
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