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Finite Element Method (FEM)

Comparison with the finite difference method (FDM)

The finite difference method (FDM) is an alternative way of approximating solutions of PDEs.
The difterences between FEM and FDM are:

The finite difference method is an approximation to the differential equation;
the finite element method is an approximation to its solution.

The most attractive feature of the FEM is its ability to handle complex geometries (and boundaries) with relative ease.
While FDM in its basic form is restricted to handle rectangular shapes and simple alterations.

The most attractive feature of finite differences is that it can be very easy to implement.

The quality of the approximation between grid points is poor in FDM comparing to FEM.

The quality of a FEM approximation is often higher than in the corresponding FDM approach,
but this is extremely problem dependent and several examples to the contrary can be provided.

Generally, FEM is the method of choice in all types of analysis in structural mechanics while computational fluid
dynamics (CFD) tends to use FDM or other methods (e.g., finite volume method). CFD problems usually require
discretization of the problem into a large number of cells/gridpoints (millions and more), therefore cost of the solution
favors simpler, lower order approximation within each cell.
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Finite Element Method — brief history

In 1943, Richard Courant introduce an interpolation from continuous system into

triangular segments. (The unveiling of ENIAC at the University of Pennsylvania.)

In the 1950s, a team from Boeing demonstrated that complex surfaces can be

analyzed with a matrix of triangular shapes via interpolation.

Dr. Ray Clough coined the term “finite element” in 1960. In 1960s saw the true
beginning of commercial FEA as computers is invented with high computational
capability.

In the early 1960s, the MacNeal-Schwendler Corporation (MSC) develop a general
purpose FEA code. This original code had a limit of 68,000 degrees of freedom.
When the NASA contract was completed, MSC continued development of its own
version called MSC/NASTRAN, while the original NASTRAN become available to
the public and formed the basis of the FEA packages available today. Around the
time MSC/NASTRAN was released, ANSYS, MARC, and SAP were introduced.
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Finite Element Method — brief history

In the 1970s, Computer-aided design (CAD) was introduced.

In the 1980s, the use of FEA and CAD on the same workstation with developing
geometry standards such as IGES and DXF (type of files). Permitted limited
geometry transfer between the systems or programes.

In the 1980s,CAD progressed from a 2D drafting tool to a 3D surfacing tool, and
then to a 3D solid modeling system. Design engineers began to seriously consider in
incorporating FEA into the general product design process.

In the 1990s, the PC platform has become a major force in high- end analysis. The
technology has become to accessible that it is actually being “hidden” inside CAD
packages. (background calculation)
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Finite Element Method
Steady-state 1-D heat conduction

Governing equation (heat conduction in plane wall with uniform heat generation)

face A/face
Heat flow \
= —s (A dx)—s — x
qA [ dg j
q+—dx |4
dx
Left Right
face face —
X X

Let A =area normal to direction of heat flow,
O(W/m?) =internal heat generated per unit volume.

Heat rate (heat flux x area) enter the control volume + heat rate generated =
Heat rate leaving control volume.

simplify d .
gA+ QAdx = q+@dx A > Q=—q q=—kw=+ve
dx dx dx
+ve=heat flux same direction
' . dT d dT B with x-axis
Substitute Fourier’s law g =—-k— I:> d_(k — [+0=0
dx X\ dx

O is called source when +ve (heat 1s generated) and is called sink when —ve (heat is consumed)
Here, O is referred.as source. Yook St g
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Finite Element Method

Steady-state 1-D heat conduction, Boundary conditions

Specified temperature Specified heat flux
. wall hT, g=0 . wall hT,
(speciied). il (nsulated)™ | | =0 | |||
R\ AR > y Lo » Convection
X X surface
L T, L YT,
Wall of tank contain hot liquid at 7, A wall where the inside surface is insulated
airstream of 7, passed on outside, And outside is convection surface.
maintain 7, at boundary. Ql—=10, ql.— =nT;-T,).

Nyo =Ty, 4qly—y = W(T;-T,). [note: T)>T,]

1-D element : two-node element with linear shape functions

...... NL

element,e q ;h(TL_Tw)

Yeak SH 6



ocw.utm.my @

Finite Element Method
1-D element
................... Actual
temperature
« S~ ¢ . et
=1 @ &=+l ©
1(&)=N,T,+N,T, =NT¢
where N,=(1-&)/2, Ny=(1+ &)/2, & varies from -1 to +1, N=[N,, N, ], Te=[T,, T,]".
2 2 _
Please note §=x2_x1 (r=x)-1, d§=x2_xl dx=zdx- x=N,x,;+N,x, Y= (1 2§)xl+wx
, dl  dT d 2 dN _, 1 . .
Use chain rule, =— ¢ = -T¢ = [-L1]T* =B, T".
dcx d& dx x,—x d& X, — X,
where B, _dn- L, 1]:1[—1 1]
dx X, =X, [

Ifdx = J:def , J =% = Jacobian

UTM
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Finite Element Method
Galerkin’s approach for heat conduction
g0y y=1=temperature
Problem: ( yj 0=0 Vi=o=Yor qlier =1 1Vs)
dx\ dx

Assume j¢{ ( ]Jr Q}dx 0 @(x) constructed from same basis function of y, with #0)=0. ¢ as a
ume: _

virtual temperature change that is consistent with boundary conditions
/,\
Weighted-Residual Method ~--_ = do dy
First term use integration by part: judv uV\ - Ivdu —> — —Ik dX+ I¢de 0
x=a x=a 0
d
Now, ¢k i ¢(L)k<L) (D)~ ¢<0)k<0) —(0)
0

) d
Since, g = <
dx

L

So., H0)-0, g(L) ~k(L)AVLY/dxTh(y;-5,.), we get k-

Xlo

<::| Weak form — reduced (weakened)
continuity of y

=—p(L)h(y, - v,,)

Finally, we get |- #(L)h(y j k=~ d¢ dy v+ j #Odx = 0

A global virtual-temperature vector is denoted: W=[/, W»,..., Wy, ], or element-wise: we=[y,, v, ]T.

The test function within each element is interpolated as: (global nodes) ¢=Nw, or element-wise ¢F=N¢

d ‘ d e d e . e dNed e e .\.Ng
AR | N I A BV 1
dx dx dx dé dx
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Finite Element Method
Galerkin’s approach for heat conduction

! Some matrix concept: (AB)"=BTAT,
+ Let A,B,C,D=row vector, ABT™=scalar - AB™= (ABT).

| ABTCDT=(ABT)ICDT=BTTATCDT=B(ATC)D =scalar ' __-Ni(x)=8;; (Kronecker delta function,global)
We get, /,x"/ 1 1
d¢ d S e, N
N C N P did“Wde 0=-(NLWi(y, ~r.)- >, [k e 3 [o0ds
0 X; i=1 X;
_ Lot do* dy 0./, ey e
__WNLh(yL_yoo)_g 5 J._l x dx Ze‘, J. Ny d& =0 dr::%edx
Note that, dd;f% - (BT ‘VeXBTye): (BT‘Ve)T(BTye): “’T(B;BT )ye and, Neye=scalar=(Ney*)T=yN™.
Qe e
0=—yh(y, —y j (BIB, Jy“dé+ Z j y'N'd¢é
N Q K, =k, [ BB, dx =k, [£(NT}£(N)dx
0= _l//NLh(yL _yoo)_ e e ;Bngye + Z;,‘VT #J‘_ NTd§ \ng ‘ ‘
) (- 1 1 —1|a 2 1 —=-1| a ( sr/
e tevely el el
. T h K. = k, -1 _ 0l 1
Finally, |0 = l//NL Z\p k,y* +Z\|} r,| where, T_l_ P el
Yeak SH O
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Finite Element Method
Galerkin’s approach for heat conduction

Some matrix concept: AMC+ANC=(AM+AN)C=A(M+N)C.

Tk, k. I
Let: ki :{k o } rg’ ZL } Please note: k; are symmetry! —k; =k,
i+1,i i+1,i+1 i+1
k k k k
2 elements example: vkTy T kY =y, v, ]{kl’l k“ }{y l}L[z//2 %{k“ k2’3 }{y 2}
21 Ko [ 32 K33 || Vs
Yy
:[ k“ +[ O k2,2 k2,3 1
vi ¥, k v, '//3 0 k3,2 k3,3 Y2
Y3
k 1,2 Y 0 0 0 Vi
[‘//1 v, V’s k k2,2 +[V/1 v, ¥5]0 kz,z k2,3 V2
0 0 k3 2 k3,3 Vs
ki, ,
[Wl ¥, l/’3 k21 2k272 k273 Yo |= ‘I’TKTY-
0 k3,2 k3,3 Vs
h r g 0
‘l’Tr5:1 +‘|’Tr5:2 = [‘//1 ¥, ]|:r }"' [‘//2 Vs {r } = [‘//1 W, Yilh +[V/1 ¥, ‘//3] 7
2 3 O ’,.3

We also get:

& R, Yeak SH 10
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Finite Element Method

Galerkin’s approach for heat conduction
Finally, we get:

0=-yyuh(y,—y.)- 2 wky +> y'r,

0= _WNLhyL + l//NLhyoo — (W:lk;l|:yl :| bt w:Nle;NL1|:yNL1:D
% Ve

+([wl %]{f}---ﬂwu WNL]PN“D Cacak )

2 rNL | - - kT(z)
T T - ':_ ' \\‘4
O=—vw, by, +vy,h, ¥ K,y+¥ R. K,= L_%__kT(e)
|
The global matrices K, and R are assembled from element matrices k, and I \_ :_ _ : J

Now, let YT=[y,, v, ..., Wy;]=[0,1,0,...,0], and y,=y,, we get

M Y

0 [ Y2 _ [ Vi | _

-0+0- K21 Kzz KZ,NL +R2—0_>K22 K23 Kz,NL —Rz_K21yo-
Yar Y

Continue the process, finally let W=y, 1, ..., Wy;]=[0,0,...,1], we get (v,=vy;)

i Y

Y y
_l'hyL +1-hy, _[KNL,I KNL,2 KNL,NL ’ +Ry, =0—> [KNL,Z KNL,3 (KNL,NL +h) -3 = (RNL +hyoo)_KNL,1y0'
Yeak SH 11
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Finite Element Method
Galerkin’s approach for heat conduction

Finally, the compact form is given:

= = Try insulation at x=L, #(L)=0
Kz,z K2,3 K2,NL %) R, K2,1y0 Try 0=2
K3,2 K3,3 Ks,NL V3 _ R, B K3,1yo

_KNL,z KNL,3 e (KNL,NL + h)_ YL Ry, +hy, KNL,lyO

Problem: A composite wall consists of 3 materials. The outer temperature 1s y,=20°C. Convection heat transfer

takes place on the inner surface of the wall with y,=800°C and #=25 W/m?-°C. Determine the temperature
distribution in the wall.

q(0) = —k%| =—k yl'SA; 4NN —k 40?_;.5100 =+ve = —fl()ﬁ _yw) /\\//—‘
Solution: we use 3 elements of hn_e_a_r_gl_e_m_e_n_t __________ - R 0=20°C
B.C.:y,=»,=20, ¢l,—o= h()’r)’oo) [v.~>y1] We get h Y TTT k, ky | ks k=20 W/m-°C
.y 06 ;=30 W/m-°C
A R I - R
0 -0 dx dx ) | | —
1 T~ }.=800°C
dy[" <o - = - - K- - DK
Ph— o, ¢(L)k(L) (L) ¢(0)k(0) (0) 03m 0.15m0.15m
So, let ¢(L) =0, ¢(0) =—k(0)[dy(0)/dx]=—h(y,-y,.), we get m 1 2 3 4 (x,=L)
d [ 4 & & ®
%—i =40~ 7.) hr.y o @ 1 @y Qre20c
0

3 elements of linear FE Veak SH 12
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Finite Element Method

Galerkin’s approach for heat conduction
Let &=NY, we get

d¢e dye Qele ! ey
0=y, h(y, - Il a— d5+§7LN"’d5
Finally, |
Y 0= —l//l Z‘VTkTy + Z\V I'o ':> 0=-y,hy, +y hy, — TTKTy + lIITR'"

Now, let YT=[y;, v, ..., Wy;]=[1,0,0,0], and y,=y,, we get

N
N
Yy
_h(yl_yw)_[Kll K, K, K14] ’ +R1:O_>[(K11+h) K, K13]{y2]—Rl+hyw_K14yo
3
V3

Vs
let Y'=[y, ¥, ..., Wy;17[0,1,0,0], we get Reason choosing
=[0,1,0,...],
N
Y n [ i Pi_y,
—040-[K,, K., Ky, K| |+R =05k, K, Kol |=R—K,.p. S N A T
Vs
Vs 73 [V/l '//2]_>[1 0]_{?6}{17}:{1}
[V/l Wz]_>[0 l] Yy q 0

FinallYa let ‘PT:[ 4T WZJ R l//NL]:[analao]a we get . .
This system equivalent to

4 setting WT=[1,0] & ¥T=[0,1]

Y

3

N
+R,=0—> [K3,1 K3,2 K3,3 {yzi =R, _K3,4y0-

Vs
V4 Yoak SH 13
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Finite Element Method
Galerkin’s approach for heat conduction

Finally, we get (K, +h) K, Ko[»n] [R+hy.| [K.p,]
K,, K,, K| |= R, - K|l (a)
L K, Ky, Kis |y R, K3,4y0_
The element conductivity matrices are /.' = =k N
1 2 3 4 —— _IkT@\)
20[1 -1 30 [1 -1 50 [ 1 -1 L-l .
k=20 L 20 S K= | 4
03/-1 1 0.15|-1 1 0.15) -1 1 T L— k,(©
The global K,=X k is obtained 1 -1 0 0 o
-1 4 -3 0 o L=t/
K, =66.7
0 -3 8 -5
0 0 -5 5
Since no heat generation Q occurs in this problem, we get r,=[0 017, R=[0 0 0]".
Given y,=20°C, ,,=800°C and #=25 W/m?-°C, 1375 =1 0 | » | |0+25(800) 0 20,000
6671 -1 4 =3[y, |= 0 - 0 = 0
eq. (@) becomes
q- () 0 -3 8|y 0 ~5(66.7)(20) | | 6670 |

This linear system can be solved using Thomas algorithm and we get [y,, ,, y;]1=[304.6, 119.0, 57.1] °C

The whole Thomas algorithm can be summarized :
d ¢ 0 - 0 (e 0 0 - 0Y(1 B 0 - o0)| 1 a=d
¢, dy e . i ¢, a 0 . ill0o 1 B : 2. a=d-cpf. ,i=2,3,....n
Ax=b, A=LU—>|0 -, . . 0 |=[0 . . . 0ll0 . . .0 ||3 PBrela,i=12,... n-1.
oo e,, d e e, a,, O 0 S|4 w=b/q
0 - 0 ¢ d, 0 - 0 ¢ a)l0 - 0 0 1 5. w=brcw, ) a;, i=2,3,....n.
6. x,=w,
7. XFEWr X, i=n-1,n-2,...,1. ME SN
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Finite Element Method
Galerkin’s approach for heat conduction

Preprocessing

Preprocessing of the problem includes one or more of the following tasks:
* Read geometry and material data (E), and boundary and
initial conditions of the problem.
*  Mesh generation.
* Generation of node numbers.
*  Generation of coordinates and connectivity.

element|1{2|3 |« local
1 71814
2 81514
3 [slofs| T
4 916]5
p 451Global
6 51211 l
7 516|2
8 6|32

Processing of FEM

Processing of the FEM includes one or more of the following tasks:
« Calculate element matrices.

» Assemble element equations.

* Solve the system of equations.

Linear triangular
element

Yeak SH 15
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Finite Element Method
Galerkin’s approach for heat conduction

Postprocessing

Postprocessing of the FEM includes one or more of the following tasks:

«  Computation of the primary and secondary variables at points of interest; primary variables
are known at nodal points.

* Interpretation of the results to check whether the solution makes sense (based on physical
Process and experience when other solutions are not available.

»  Tabular and/or graphical presentation of the results. Contour plotting uses ¢ = . ix (x—x)-1
Interpolation of temperature within each element is given Contour plot for stress
V(&=Ny TNy, = Ny*
where N,=(1-8)/2, N,=(1+ &)/2, & varies from -1 to +1, N=[N,, N, ], y=[y,, »,]%
The derivative of the solution is obtained by differentiation
: dy dy dé& 2 dN 1
Use chain rule, === -y =—[-L1]y* =B,y".
i dE dx w—x gz ¥ P =By
dy” | o1 304.6 T -
For element 1, we get Z— =B,y = l—[—l,l]ye‘1 = E[_l 1]{1 19 O} =—-618.67 o y
x ¢ ' ' Contour plot for 7(x,y)
For element 2, we get ™ =B,y —l[—l 1y —L[—l 1] 190 =-412.67
WO T ToY T T 57.1 |

Note that the derivative above is discontinuous, for any order element, at the nodes connecting the different
elements because the continuity of the derivative of FE solution at the connecting nodes 1s not imposed. Yeak SH 16



ocw.utm.my @HTM

References

Brian Bradie, A Friendly Introduction to Numerical Analysis,
Prentice Hall, New Jersey, 2006.

Fausett L.V, Numerical Methods; algorithm and applications,
Prentice Hall, New Jersey,2003

Rao S.S, Applied Numerical Methods for Engineers and
Scientist, Prentice Hall, New Jersey,2002

Faires J.D. Burden R, Numerical Methods, 2nd Edition, Thomson
Brooks/Cole, Australia, 1998

Burden R.L, Faires J.D & Reynolds A.C, Numerical Analysis, 5th
edition, PWS-KENT Pub, Boston, 1993

Introduction to Finite Elements in Engineering , T. R.
Chandrupatla, A. D. Belegundu, 3rd edition, Prentice Hall, N.J.
2002

||||||||



