

CHAPTER 1 Introduction of Control System

DR. SHAFISHUHAZA SAHLAN | DR. SHAHDAN SUDIN DR. HERMAN WAHID | DR. FATIMAH SHAM ISMAIL

Department of Control and Mechatronics Engineering Faculty of Electrical Engineering Universiti Teknologi Malaysia

Content

1.1

• History of Control System

1.2

• Control System Basics

1.3

• Control System Configuration

1.4

• Examples of Control Systems

1.5

Control System Design

1.6

• Simulation Software in Control – MATLAB

1.1 **History of Control** System

History of Control System

300 BC

1900's

2000's

Early

• Simple, primitive

- Water clock (300 BC)
- Steam pressure & temperature control systems (1680s)
- Speed control (1745)
- **Stability Theories**
 - **Routh-Hurwitz** (1877)
 - Lyapunov (1892)

20th Century

• Extensive use of sensors

- **Automatic Ship Steering** (1922)
- PID Controller (1920s)
- Feedback Control System Technique (1930s)
- Root locus, Bode, Nyquist (1948)

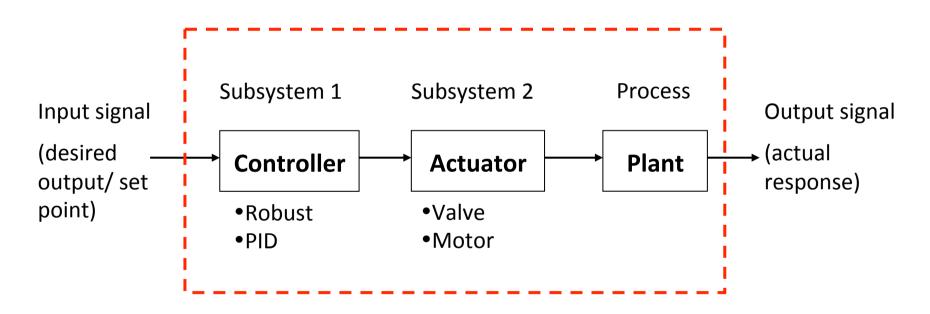
Contemporary

• Widespread applications

- **Navigation**
- Entertainment
- **Smart Homes**
- Military
- **Space Application**
- **Chemical Process**

OPENCOURSEWARE

- ♦ One of the earliest control systems known is the water clock invented by Ktesibios (300 BC)- Liquid level control.
- ♦ In 1681, Denis Papin introduced the steam pressure control
- ♦ In 17th century, hatching eggs using mechanical temperature control
- ♦ In 1745, speed of windmills are controlled
 - ♦ Pitching blades further back so less area available
 - ♦ As wind decreases, more blade area available
- ♦ In 1868, James Maxwell published the stability criterion for a 3rd order system based on the coefficients of differential equations
- ♦ In 1877, Routh Hurwitz criterion to determine the stability of a system is proposed


1.2 **Control System Basics**

Control System Basics

- General Control System Block Diagram

CONTROL SYSTEM

Control System Basics- Purpose & Methods

Primary Aim:

- To regulate certain variables about constant values even when there are disturbances.
- To force some parameter to vary in a specific manner.

Control Methods:

- 'Manual' control
- 'Automatic' control

4 main control purposes

- For power amplification
- e.g. in moving the radar antenna position to certain angle, small input power is amplified to produce high output torque

- For remote control
- e.g. in controlling the movements of robots working in contaminated areas where human presence should be avoided

- For convenience of input form
- e.g. in a temperature control system, the turn of a knob corresponds to certain desired room temperature.

- For compensation for disturbance
- e.g. to maintain antenna position in the presence of strong wind.

Manual Control

Human-aided control

Operator constantly observe the deviation and make corrections when necessary

Not consistent

Hundreds of variables to be controlled

Automatic Control

To replace humans with machines (nowadays, computers) to implement the control of the plant.

Measurement → sensors/transducers

Decision → computers

Control action → actuators

3 Main Control System Components

1. Sensor

- sense the physical signals
- convert into electrical signals
- e.g. thermocouple measures a temperature and converts it into voltage

2. Controller

- the 'brain' of the control system
- does all the calculations. and decision-making processes – computer
- compares the desired and actual plant output -> calculate the amount of control to be applied

3. Final control element

- accepts an input from the controller, which is then transformed into some proportional operation performed on the process
- must be operated by an actuator
- e.g. to control the yawing direction of a ship, the rudder (the final control element) is moved to certain angle by a hydraulic actuator.

2 Types of Control Problems

1. Regulation

Problem: CV deviates from SP due to disturbance.

'Regulatory control'

To maintain the quantity at some desired value regardless of external influences.

2. Servo Control

Problem: CV must follow the changes in the SP.

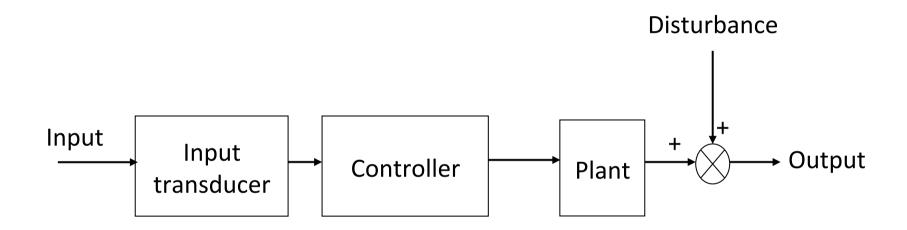
'Servo Control'

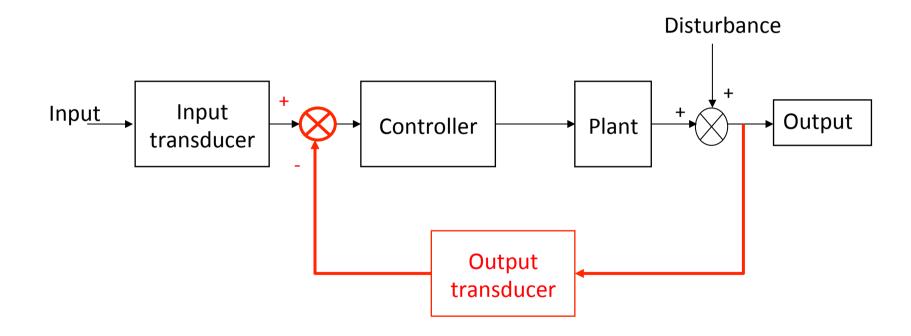
Make CV follow SP when the SP changes.

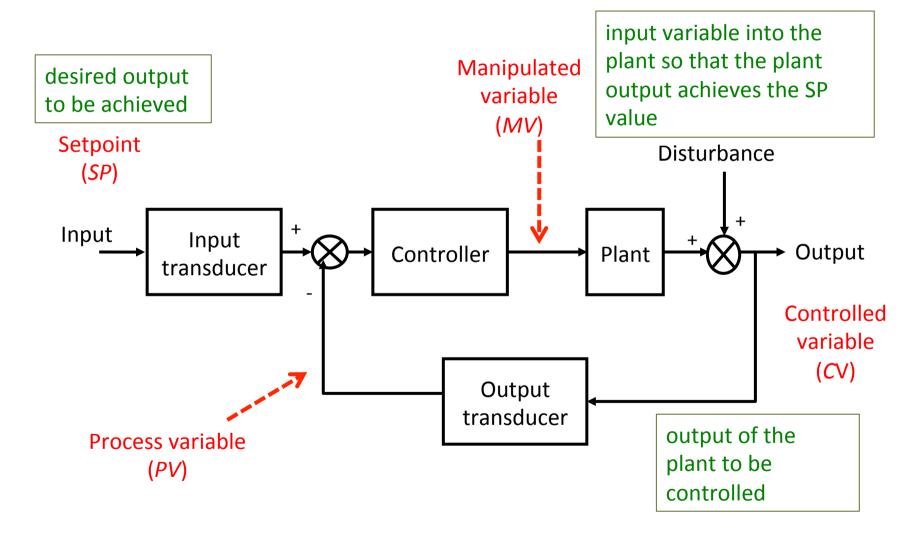
1.3 **Control System** Configuration

Control System Configuration

Open-loop


Closed-loop


Open-loop Control System


Closed-loop Control System


Closed-loop Control System

Example: Liquid Level Control System

1.4 **Examples of Control Systems**

Examples

Power amplification in a dish-type antennas

- Varying in diameter from 8 to 30 metres
- Serving an Earth station in a satellite communications network.

Convenient input for a **thermostat**

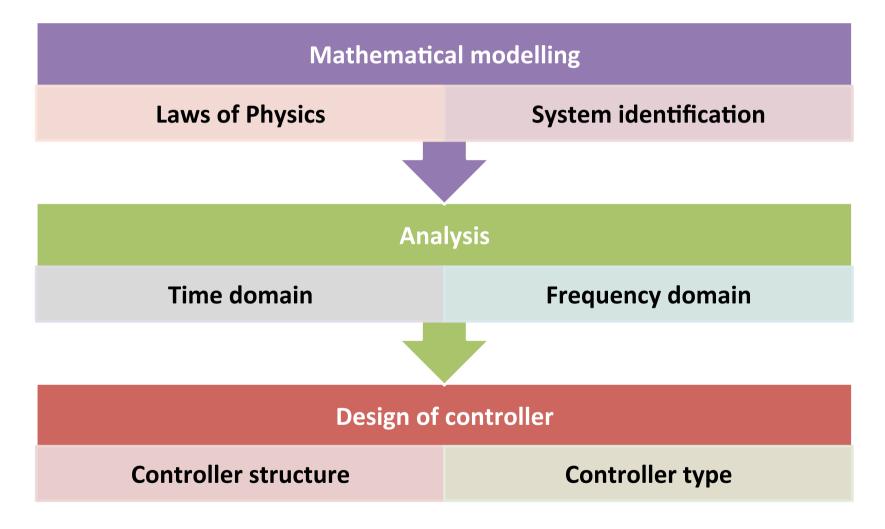
Position to heat

Remote control robots in contaminated area: Sojourner

- Roving on Mars in 1997.
- Solar-powered, 11.5 kg.
- Speed: 0.4 meters/minute
- Its wheel system enabled it to climb over obstacles one-and-ahalf wheel diameters tall.

Disturbance compensation in a **Rolling Mill**

 Maintain steel thickness despite variations/disturbance



1.5 **Control System** Design

General Controller Design Process

Controller Design Process:- General

STEP 1

• Transform requirement s into physical systems

STEP 2

• Draw a functional block diagram

STEP 3

• Create a schematic

STEP 4

Develop mathematical model (block

STEP 5

block

STEP 6

Analyze &

Chapter 1

Chapter 2

Chapter 3

Chapter 4

1.6 Simulation Software in Control - MATLAB

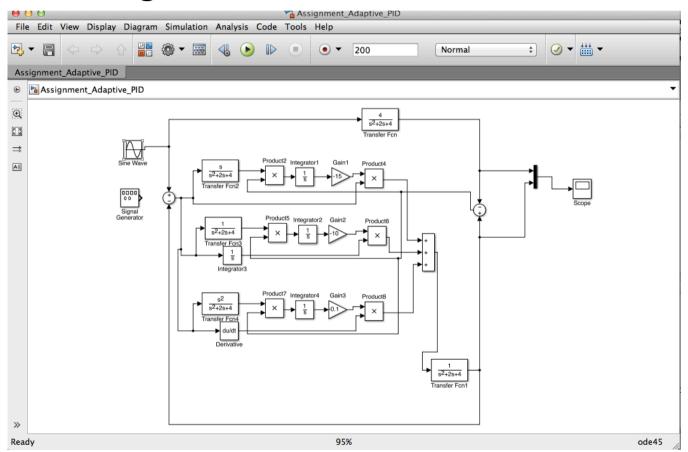
MATLAB

 Important tool in current control system design.

MATLAB contains:

- Lots of Toolboxes one of them is 'Control System Toolbox'
- Simulink click and drag

Control System Toolbox


- Contains a set of functions relation to control system design.
- Can be used together with other MATLAB functions or functions from other toolboxes.

- **Simulink** More graphical.
- Code writing is minimal.

Review questions

- Name 3 applications of feedback control system.
- Give 3 examples of open-loop systems.
- Give an example of what happen to a system that is unstable.
- Name 3 approaches to the mathematical modeling of control systems.
- How do we classify control systems?
- What are the steps involved in designing a control system?

REFERENCES

- [1] Norman S. Nise, Control Systems Engineering (6th Edition), John Wiley and Sons, 2011.
- [2] Katsuhiko Ogata, Modern Control Engineering (5th Edition), Pearson Education International, Inc., 2010.
- [3] Richard C. Dorf and Robert H. Bishop, Modern Control Systems (12th Edition), Pearson Educational International, 2011.
- [4] Rao V. Dukkipati, Analysis and Design of Control systems Using MATLAB, Published by New Age International (P) Ltd., Publishers, 2006.
- [5] Katsuhiko Ogata, MATLAB For Control Engineers, Pearson Education International, Inc., 2008.