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The students are expected:

• To describe shape function for an element displacement based on the natural 
coordinate 

By	the	end of	the	notes:
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According to Hooke’s law

F = kx

Basic	concept	of	FEM

Where k is the spring stiffness
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Basic	concept	of	FEM



Loading	Condition

Point load, P

• Concentrated load acting at any 
point along the body/structure

• Unit in Newton (N)
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Traction force, T

• Distributed load acting on the 
surface of the body

• For a 1-D problem, it is defined in 
terms of force per unit length
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Loading	Condition



Body force, f

• Distributed force acting on every 
elemental volume of the body

• It has the units of force per unit 
volume

• E.g. self weight of the body due 
to gravity
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Loading	Condition



Step 1:
Element Discretisation

• Subdivide the bar into several
sections

• Each section should have
uniform cross-sectional area

• The non-uniform bar is then
discretised into a stepped bar
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Finite	Element		Modeling	



Step 2:
Numbering Scheme

• A global numbering scheme is
assigned

• X-direction in this case is
considered the global coordinate
direction

• F represents the global forces
acting at the nodes

• Q represents the global
displacements at the nodes
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Finite	Element		Modeling	



Step 3:
Element Connectivity

• q represents the nodal
displacements in the local
coordinate direction

x

1

2

3

4

1

2

3

4

5 e

2̂

1̂
q1

q2

Element Connectivity Table
Nodes

1 2

2 3

3 4

4 5

Finite	Element		Modeling	



Element	Analysis
(1-D	element	- 2	nodes)



Natural	Coordinate
Consider a single element (2 nodes): 
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Datum
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x1→ξ = −1
x2 →ξ = +1

Assuming the natural/intrinsic 
coordinate is ξ:

ξ =mx + c
For a 2-node element, 
we assume:
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The natural/intrinsic coordinate system can be defined as:

Natural	Coordinate



Element	Displacement
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q1 q2u(x)
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• The displacement
field, u(x) within an
element is not
known

• To simplify the
problem, it is
assumed that the
displacement
varies linearly from
node 1 to node 2
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u(x) u = a1 + a2x '

q1 – displacement at node 1
q2 – displacement at node 2
u   – displacement of a point 

within the element
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Shape functions have to
satisfy the following:
• First derivative MUST be

finite within an element
• Displacements MUST be

continuous across
element boundary

Shape Functions

q1 – displacement at node 1
q2 – displacement at node 2
u   – displacement of a point 

within the element

Element	Displacement
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q1 – displacement at node 1
q2 – displacement at node 2
u   – displacement of a point 

within the element
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To describe the Shape
function in terms of
Natural Coordinate:
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Element	Displacement



ε =
du
dx

Strain-Displacement Relation:

→ε =
du
dξ

×
dξ
dx

Applying Chain-Rule:
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Strain-Displacement	Relation



σ = Eε

Stress-Strain Relation:

ε = B{ }
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Strain-Displacement Relation:
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Stress-Strain	Relation



All of you are expected to be able:

• To describe shape function for an element displacement based on the natural 
coordinate 

By	the	end of	the	notes:


