

SKMM 3033 Finite Element Method

Topic 6: Coordinate transformation for Truss stiffness matrix

DR WILLIAM CHONG WOEI FONG Department of Aeronautics, Automotive and Ocean **Engineering Faculty of Mechanical Engineering**

By the end of the notes:

The students are expected:

- To execute coordinate transformations of 1-dimensional bar element for plane trusses
- To derive element stiffness matrix for plane trusses

Plane Trusses

- A typical two-dimensional plane truss comprises of two-force members
- It is connected by frictionless joints.
- All loads and reaction forces are applied at the joints only.

Plane Trusses

- A typical two-dimensional plane truss comprises of two-force members
- It is connected by frictionless joints.
- All loads and reaction forces are applied at the joints only.

Element Connectivity Table

Elements & Nodes

<u>Elements</u>	<u>Nodes</u>	
	1	2
2	3	2
3	1	3
4	4	3

 Q_{2i-1}

$$\left\{q\right\} = \left(\begin{array}{c} q_1 \\ q_2 \\ q_5 \\ q_6 \end{array}\right)$$

$$m = \sin \theta$$

$$\{q'\} = \begin{pmatrix} q'_1 \\ q'_3 \end{pmatrix} \qquad q'_1 = q_1 \cos \theta + q_2 \sin \theta$$

$$q'_5 = q_5 \cos \theta + q_6 \sin \theta$$

$$q'_3$$
 θ

$$q'_{1} = q_{1}\cos\theta + q_{2}\sin\theta$$
$$q'_{5} = q_{5}\cos\theta + q_{6}\sin\theta$$

$$\left\{q\right\} = \left(\begin{array}{c} q_1 \\ q_2 \\ q_5 \\ q_6 \end{array}\right)$$

$$q'_1 = q_1 l + q_2 m$$

 $q'_3 = q_5 l + q_6 m$

$$q'_{1} = q_{1}\cos\theta + q_{2}\sin\theta$$
$$q'_{3} = q_{5}\cos\theta + q_{6}\sin\theta$$

$$\therefore \begin{pmatrix} q'_1 \\ q'_3 \end{pmatrix} = \begin{pmatrix} l & m & 0 & 0 \\ 0 & 0 & l & m \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \\ q_5 \\ q_6 \end{pmatrix}$$

$$\left\{q\right\} = \left(\begin{array}{c} q_1 \\ q_2 \\ q_5 \\ q_6 \end{array}\right)$$

$$q'_{1} = q_{1}l + q_{2}m$$

 $q'_{3} = q_{5}l + q_{6}m$

$$\therefore \left(\begin{array}{c} q_1' \\ q_3' \end{array} \right) = \left(\begin{array}{cccc} l & m & 0 & 0 \\ 0 & 0 & l & m \end{array} \right) \left(\begin{array}{c} q_1 \\ q_2 \\ q_5 \\ q_6 \end{array} \right)$$

$$\{q'\} = \{L\}\{q\}$$

$$\therefore \begin{pmatrix} q'_1 \\ q'_3 \end{pmatrix} = \begin{pmatrix} l & m & 0 & 0 \\ 0 & 0 & l & m \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \\ q_5 \\ q_6 \end{pmatrix}$$

$$X_1, Y_1$$

$$l = \cos\theta = \frac{x_2 - x_1}{l_e}$$

$$m = \sin \theta = \frac{y_2 - y_1}{l_e}$$

$$\{q'\} = \{L\}\{q\}$$

$$\{q'\} = \{L\}\{q\}$$

$$U_{e} = \frac{1}{2} \left[\{L\} \{q\} \right]^{T} k^{e} \{L\} \{q\} \qquad U_{e} = \frac{1}{2} \{q'\}^{T} k^{e} \{q'\}$$

$$U_{e} = \frac{1}{2} [\{L\}\{q\}]^{T} k^{e} \{L\}\{q\}$$

$$U_{e} = \frac{1}{2} \{q\}^{T} \{L\}^{T} k^{e} \{L\} \{q\}$$

$$= \begin{pmatrix} l & 0 \\ m & 0 \\ 0 & l \\ 0 & m \end{pmatrix} \times \frac{EA_e}{l_e} \times \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \times \begin{pmatrix} l & m & 0 & 0 \\ 0 & 0 & l & m \end{pmatrix}$$

$$= \frac{EA_{e}}{l_{e}} \begin{pmatrix} l & 0 \\ m & 0 \\ 0 & l \\ 0 & m \end{pmatrix} \begin{pmatrix} l & m & -l & -m \\ -l & -m & l & m \end{pmatrix}$$

$$U_{e} = \frac{1}{2} [\{L\}\{q\}]^{T} k^{e} \{L\}\{q\}$$

$$U_{e} = \frac{1}{2} \{q\}^{T} \{L\}^{T} k^{e} \{L\} \{q\}$$

$$\therefore k^{truss} = \frac{EA_e}{l_e} \begin{pmatrix} l^2 & lm & -l^2 & -lm \\ lm & m^2 & -lm & -m^2 \\ -l^2 & -lm & l^2 & lm \\ -lm & -m^2 & lm & m^2 \end{pmatrix}$$

By the end of the notes:

You are expected to be able to:

- To execute coordinate transformations of 1-dimensional bar element for plane trusses
- To derive element stiffness matrix for plane trusses