
Inheritance

Associate Prof. Dr. Norazah Yusof

Object Oriented
Programming – SCJ2153

Introduction to Inheritance

• Inheritance is one of the main techniques of object-oriented
programming (OOP)

• Using this technique, a very general form of a class is first
defined and compiled, and then more specialized versions of
the class are defined by adding instance variables and
methods
– The specialized classes are said to inherit the methods and

instance variables of the general class

2

The “is a” Relationship

• The relationship between a superclass and an inherited class
is called an “is a” relationship.
– A student “is a” person.

– A cow “is a” animal.

– A bicycle “is a” vehicle.

• A specialized object has:

– all of the characteristics of the general object, plus

– additional characteristics that make it special.

• In object-oriented programming, inheritance is used to
create an “is a” relationship among classes.

3

The “is a” Relationship

• We can extend the capabilities of a class.

• Inheritance involves a superclass and a subclass.

– The superclass is the general class and

– the subclass is the specialized class.

• The subclass is based on, or extended from, the
superclass.

– Superclasses are also called base classes, and

– subclasses are also called derived classes.

• The relationship of classes can be thought of as parent
classes and child classes.

4

Inherited Members

• A derived class automatically has all the instance variables, all
the static variables, and all the public methods of the base
class
– Members from the base class are said to be inherited

• Definitions for the inherited variables and methods do not
appear in the derived class
– The code is reused without having to explicitly copy it, unless

the creator of the derived class redefines one or more of the
base class methods

5

6

Protected Modifier

• Protected modifier is used to control access to the members
of a class.

• A variable or method declared with protected visibility may be
accessed by any class in the same package. In other words a
derived class can reference it.

• A protected visibility allows a class to retain some
encapsulation properties. However, the encapsulation is not
as tight as private.

7

Example Derived Classes

• An arrow with an open
arrowhead is used to show

inheritance.
• The symbol # is used to

represent protected access.

Book

pages: int

+ getPages() : int

+ setPages(int) : void

Dictionary

- definition: int

+ computeRatio() : double

+ setDefinitions(int) : void

+ getDefinitions() : int

8

Example Derived Classes

• When a derived class is defined, it is said to inherit the
instance variables and methods of the base class that it
extends
– Class Book defines the instance variables pages in its class

definition
– Class Dictionary also has these instance variables, but they

are not specified in its class definition.
– Class Dictionary has additional instance variable
definitions that are specified in its class definition.

9

Example Derived Classes

• Just as it inherits the instance variables of the class Book, the
class Dictionary inherits all of its methods as well
– The class Dictionary inherits the methods getPages, and
setPages from the class Book

– Any object of the class Dictionary can invoke one of these
methods, just like any other method.

10

Programming Example

Program description

• Write a complete Java program that contains
classes as shown below:

– The Worker class serves as the parent of all
classes and contains information that applies to all
workers. Each worker has a name of type String.
The Worker class contains a toString method to
return the name of the worker.

11

Program description

– The HourlyWorker class represents a worker that
earns an income based on hourly worked. The
HourlyWorker class contains of an instance
variable i.e. hour of type integer that represents
the number of hours worked. It consists of an
earning method that returns the result of hour *
5.00 (rate per hour). It also consists of a toString
method to return the worker information and
his/her income.

12

Program description

– The MonthlyWorker class represents a worker
that earns an income in a monthly basis. It
contains an instance variable i.e. salary of type
double that represents the monthly salary. It
consists of an earning method that returns the
salary. It also contains a toString method to return
the worker information and his/her monthly
income.

– The TestWorker class represents the application
program that instantiates HourlyWorker and
MonthlyWorker objects, and then invoke their
toString() method.

13

14

TestWorker.java

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

class Worker {

 private String name;

 public Worker(String n) {

 name = n;

 }

 public String toString(){

 return "Name :"+name;

 }

}

class HourlyWorker extends Worker {

 private int hour;

 public HourlyWorker(String n, int h) {

 super(n);

 hour = h;

 }

TestWorker.java

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

 public double earning() {

 return hour * 5.00;

 }

 public String toString(){

 return super.toString()+"\nHours worked:“ + hour+

 "\nEarning:"+earning();

 }

}

class MonthlyWorker extends Worker {

 private double salary;

 public MonthlyWorker(String n, double s) {

 super(n);

 salary = s;

 }

 public double earning() {

 return salary;

 }

TestWorker.java

17

40

41

42

43

44

45

46

47

48

49

50

51

52

53

public String toString(){

 return super.toString() + "\nEarning:"+ earning();

 }

}

public class TestWorker {

 public static void main(String[] args){

 HourlyWorker h1 = new HourlyWorker("Ali",6);

 System.out.println (h1.toString());

 MonthlyWorker h2 = new MonthlyWorker("Abu",6000);

 System.out.println (h2.toString());

 }

}

