

Application of Computer in Chemistry SSC 3533

MOLECULAR MODELING

Prof. Mohamed Noor Hasan Dr. Hasmerya Maarof Department of Chemistry

Outline

- Introduction to Molecular Modeling
- Molecular Mechanics
- Quantum Mechanic methods
- Software Packages
- Comparison

Introduction

- Using computer to construct models of molecular structures
- Involves calculation of preferred (lowest energy) conformation of molecular structures
- Models generated can be used to estimate properties, perform simulation, predict reactions

Why use computer?

- The models produced are flexible
- Models of large molecules can be easily generated
- Size of the models can be modified
- Able to zoom to certain areas of the structure to study properties, reactions etc.

Molecular Models

Modeling methods

Quantum Mechanics

- Ab Initio Method
- Calculation is very intensive because all electrons involved in the formation of bonds are taken into account
- Only suitable for small molecules
- Molecular Orbital Method
- Just like ab initio but simpler because only orbitals (valence electrons) are taken into account

Modeling Methods

- Molecular Mechanics
- Modeling is based on interactions among atoms – the smallest entity in the model development
- Electrons and orbitals are considered part of the atoms

Molecular Mechanics

- Data for small molecules can be used for large molecules
- A molecule consists of atoms held by elastic/ harmonic forces. Law of physics (Hooke's Law) can be applied
- The forces are defined by potential energy function
- Group of forces form force field
- A molecule in the force field will take the conformation with lowest energy

Potential Energy (Strain Energy)

$$E_{str} = E_{bond} + E_{angle} + E_{tor} + E_{nb}$$

- E_{str} Strain Energy (Potential energy)
- E_{bond} Bond stretching energy
- $E_{\rm angle}$ Angle bending energy
- $E_{\rm tor}$ Torsional angle energy
- $E_{\rm nb}$ Non-bonded interactions energy

Bond Stretching

$$E_{bond} = \frac{1}{2} \sum_{i=1}^{N_b} k_b (r_i - r_\circ)^2$$

 $N_{\rm h}$ – number of bonds

 k_h – constant

 $r_{\rm i}$ – actual bond length

 r_0 – optimum bond length

C-C - 1.54 Å

C=C-1.34 Å

C≡C - 1.20 Å

C...C - 1.39 Å

Energy change with bond length

Angle bending

$$E_{angle} = \frac{1}{2} \sum_{i=1}^{Na} k_{\theta} (\theta_i - \theta_{\circ})^2$$

N_a – Number of angles

 $k_{\rm A}$ - constant

 θ_i – actual angle

 θ_{o} – optimum angle

$$sp^3 - 109.5^{\circ}$$

$$sp^{2} - 120^{\circ}$$

$$sp - 180^{\circ}$$

Energy change with angle

Torsional Angle

$$E_{\phi} = \frac{V}{2} \left(1 + \cos(n\phi - \gamma) \right)$$

V – constant

n – number of angles

 ϕ – torsional angle

 γ – phase factor

Energy change with torsional angle

Non-bonded interactions

 $E_{\rm nb}$ = Electrostatic Energy + van der Waals Energy

$$E_{s} = \frac{q_{i}q_{j}}{r_{ij}}$$

$$E_{vdw} = \varepsilon_{12} \left[\left(\frac{R^*}{r_{ij}} \right)^{12} - 2 \left(\frac{R^*}{r_{ij}} \right)^{6} \right]$$

 q_i – charge on atom *i*

 q_i – charge on atom j

 r_{ii} – distance *i* and *j*

 ϵ – depth of energy well

R* - van der Waals radius

 r_{ij} – distance *i* and *j*

Energy change with atomic distance

Method for Energy Minimization

Steepest Decent

- 1. Move an atom by dx, dy, dz
- 2. Calculate change of energy per change on coordinate: dE/dx, dE/dy, dE/dz
- 3. Go back to original position
- 4. Repeat for all atoms
- 5. Move the atoms to new positions proportional with the change in energy.
- 6. Repeat until conformation with minimum energy is reached.

Applications

- Geometry optimization
 - Find conformation with minimum strain energy
- Energy Calculation
 - Energy for certain conformation or plot of potential energy for a particular model
- Estimation of physical/chemical properties
 - Surface area
 - Molecular volume
 - Dipole moment

Global vs. Local Minimum

If optimization starts from point b, will achieve minimum energy at a – Global minimum

If optimization starts from point d, minimum will be found at f - Local minimum

Quantum Mechanics

Quantum mechanic methods (ab initio and semiempirical) are based on the following principles:

- Nucleus and electrons are differentiated
- Electron-electron interactions and electron-nucleus interactions are explicit.
- Interactions are controlled by charges on electrons and nucleus (i.e. potential energy) and electron movement
- Interactions determine nuclear and electron distribution and their energies

Schrödinger Equation

 Quantum mechanic methods involve solution of Schrödinger wave equation.

$$H\Psi = E\Psi$$

- H Hamiltonian Operator: contains information on electrons and nucleus in a system
- Ψ Wave function: describe electrons in terms of position and movement
- E Energy related to certain electron

Solution of Schrödinger Equation

- Exact solution of Schrödinger equation is only for 1 electron – 1 nucleus system.
- The solution describe allowed states of an electron

•
$$\int \Psi^{2}(r)dr = 1$$

$$r = \text{radius } (x, y, z)$$

 Solution of this probability function is called orbital, i.e. the probability of finding electrons for that atom

Semi-empirical method

 In a semi-empirical method experimental data (parameter) is used to simplify calculations

Examples

- CNDO (Complete neglect of differential overlap)
- MNDO (Modified neglect of diatomic overlap)
- AM1 (Austin Model 1)
- PM3 (Parameterization method 3)

Example Software Packages

- MOPAC (Molecular Orbital Package)
 - Originally free, now a commercial product
 - Also bundled with other software packages
- GAMESS (General atomic and molecular atomic structure system)
 - ab initio method
 - Freely available
- Gaussian
 - ab initio method

Software packages

- Alchemy
 - MM3 and MOPAC
- Chem3D
 - MM2 and MOPAC
- CHARMM
 - Molecular mechanics for large molecules (macromolecule)
- HyperChem
 - MM, semi-empiric and ab initio

Method Comparison: MM

- Calculation is fast: time $\propto N^2$
- Concept easy to understand
- Can be used for large molecules (thousands of atoms)
- Cannot calculate charge
- Requires parameters from experimental data
- Easily trapped in local minima

Method comparison: Semi-empirical

- Calculation is faster than ab initio: time $\propto N^3$
- Can calculate transition states and exited states
- Can be used to model moderately large molecules (hundreds of atoms)
- Calculation does not require very high CPU time

Method Comparison: ab initio

- Does not depend on experimental data
- Can calculate transition states and exited states
- Calculation results are accurate
- Calculations are a bit slow: time

 N⁴
- Theory is difficult to understand
- Limited to small molecules (tens of atoms)