

Application of Computer in Chemistry SSC 3533

QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS

Prof. Mohamed Noor Hasan Dr. Hasmerya Maarof Department of Chemistry

QSAR

 A quantitative structure-activity relationship (QSAR) correlates measurable or calculable physical or molecular properties to some specific biological activity in a form of an equation.

```
A = k_1 D_1 + k_2 D_2 + k_3 D_3 + k_n D_n
```

A – Biological activity

D – structural properties (descriptors)

k – regression coefficient

- Once a valid QSAR has been determined, it is possible to predict the biological activity of new compounds
- Sometimes the activity can be physical properties QSPR

The QSAR Approach

The Motivation

- Main objectives of QSAR studies:
 - To understand the mechanism of the biological activity. Sometimes the type of descriptors selected in the model provides a clue to the mechanism
 - To predict activity of unknown compounds. This could save cost and time on expensive biological tests on animals.

History of QSAR

- The first application of QSAR is attributed to Hansch (1969),
- Developed an equation that related biological activity to electronic characteristics and the hydrophobicity

$$\log (1/C) = k_1 \log P - k_2 (\log P)^2 + k_3 \sigma + k_4$$

C = minimum effective dose

P = octanol - water partition coefficient

 σ = Hammett substituent constant

k_x= constants derived from regression analysis

Hansch's Approach

- Log P is a measure of the drug's hydrophobicity, which was selected as a measure of its ability to pass through cell membranes.
- The log P (or log $P_{o/w}$) value reflects the relative solubility of the drug in octanol (representing the lipid bilayer of a cell membrane) and water (the fluid within the cell and in blood).
- Log P values may be measured experimentally or, more commonly, calculated.

Calculating Log P

$$Log P = Log K_{(o/w)} = Log ([X]_{octanol}/[X]_{water})$$

Most programs use a group additivity approach:

1 Aromatic ring 0.780

7 H's on Carbon 1.589

1 C-Br bond -0.120

1 alkyl C

0.195

Sum = 2.924 = calc. log P

• Some use more complicated algorithms, including factors such as the dipole moment, molecular size and shape.

Hansch's Approach...

- The Hammett substituent constant (s) reflects the drug molecule's intrinsic reactivity, related to electronic factors caused by aryl substituents.
- In chemical reactions, aromatic ring substituents can alter the rate of reaction by up to 6 orders of magnitude!
- For example, the rate of the reaction below is $^{\sim}10^5$ times slower when X = NO₂ than when X = CH₃

$$X \longrightarrow \begin{matrix} & & \downarrow \\ & \downarrow \\ & C \\ & H \end{matrix} \longrightarrow \begin{matrix} & CH_3OH \\ & & \\$$

Hammett Equation

 Hammett observed a linear free energy relationship between the log of the relative rate constants for ester hydrolysis and the log of the relative acid ionization (equilibrium) constants for a series of substituted benzoic esters & acids.

$$\log (k_x/k_H) = \log (K_x/K_H) = \rho \sigma$$

• He arbitrarily assigned ρ , the reaction constant, of the acid ionization of benzoic acid a value of 1.

Hammett Plot

- Aryl substituent constants (σ) were determined by measuring the effect of a substituent on a reaction rate (or K_{eq}). These are listed in tables, and are constant in widely different reactions.
- Reaction constants (ρ) for other reactions may also be determined by comparison of the relative rates (or K_{eq}) of two differently substituted reactants, using the substituent constants described above.
- Some of these values (σ and ρ) are listed on the following slide.

Molecular Properties in QSAR

- Many other molecular properties have been incorporated into QSAR studies; some of these are measurable physical properties, such as:
 - density
 - ionization energy
 - boiling point
 - refractive index
 - molar refractivity

- molecular weight
- dipole moment (μ)
- Surface area
- Molecular volume
- polarizability

The QSAR Methodology

Structure entry and modeling

Descriptors

- Descriptors are generated numerical quantities that represent molecular structures
- Types of descriptors:
 - Topological
 - Geometrical
 - Electronic
 - Calculated physical properties

Topological Descriptors

- The structures of organic compounds can be represented as connection tables and graphs. Rules of graph theory can be applied to form topologial indices.
- Examples:
 - atom counts
 - ring counts
 - molecular connectivity indices
 - substructure counts
 - molecular weights

Electronic Descriptors

- Electronic descriptors are calculated to encode aspects of the structures that are related to the electrons.
- Examples of electronic descriptors:
 - Partial atomic charges
 - Sigma charges
 - HOMO or LUMO energies
 - Dipole moment

Geometrical Descriptors

- Geometric descriptors are calculated to encode the 3-D aspects of the structures
- Examples of geometrical descriptors:
 - moments of inertia
 - solvent-accessible surface area
 - Molecular volume
 - length-to-breadth ratios
 - shadow areas

Calculated Property Descriptors

- Physical properties which are estimated using computer method
- Log P
- Refractive index
- Polarizability

Descriptor Selection

- After descriptors have been calculated for each compound, the set must be reduced to a set of descriptors which is as information rich but as small as possible.
- Objective feature selection uses only the independent variables, and descriptors to discard are identified by
 - pairwise correlations
 - tests of identical values
- Subjective feature selection, which does use the dependent variable values, is applied to further reduce the descriptor set

QSAR Model Development

Statistical/computer methods used for model development:

- 1. Multiple Linear Regression (MLR)
 - Limitations: 5 to 1 ratio, no correlation among descs.
- 3. Partial Least Square Regression (PLS)
- 4. Neural Networks

Model Validation

- Developed QSAR models must be validated to ensure that the models will be useful
- Validation of the model is accomplished by predicting the activity of compounds in the external prediction set
- The errors produced in the predictions should be comparable to those achieved for the training set

Example of a QSAR

Anti-adrenergic Activity and Physicochemical Properties of 3,4- disubstituted N,N-dimethyl- α -bromophenethylamines

 π = Lipophilicity parameter

 σ^+ = Hammett Sigma⁺ (for benzylic cations)

 $E_{s(meta)}$ = Taft's steric parameter

Example of a QSAR...

QSAR Equation a: (using 2 variables)

log (1/C) = 1.151
$$\pi$$
 - 1.464 σ + 7.817 (n = 22; r = 0.945)

QSAR Equation b: (using 3 variables)

log (1/C) = 1.259
$$\pi$$
 - 1.460 σ + 0.208 $E_{s(meta)}$ + 7.619 (n = 22; r = 0.959)