
Looping

Programming Techniques I
SCJ1013

Dr Masitah Ghazali

The Increment and Decrement Operators
… recap

The Increment and Decrement
Operators

• ++ is the increment operator.

It adds one to a variable.

val++; is the same as val = val + 1;

• ++ can be used before (prefix) or after
(postfix) a variable:
++val; val++;

• ++ is the increment operator.

It adds one to a variable.

val++; is the same as val = val + 1;

• ++ can be used before (prefix) or after
(postfix) a variable:
++val; val++;

The Increment and Decrement
Operators

• -- is the decrement operator.

It subtracts one from a variable.

val--; is the same as val = val - 1;

• -- can be also used before (prefix) or after
(postfix) a variable:
--val; val--;

• -- is the decrement operator.

It subtracts one from a variable.

val--; is the same as val = val - 1;

• -- can be also used before (prefix) or after
(postfix) a variable:
--val; val--;

The Increment and Decrement
Operators – example

(Program Continues)

The Increment and Decrement
Operators – example

Prefix vs. Postfix

• ++ and -- operators can be used in
complex statements and expressions

• In prefix mode (++val, --val) the
operator increments or decrements, then
returns the value of the variable

• In postfix mode (val++, val--) the
operator returns the value of the variable,
then increments or decrements

• ++ and -- operators can be used in
complex statements and expressions

• In prefix mode (++val, --val) the
operator increments or decrements, then
returns the value of the variable

• In postfix mode (val++, val--) the
operator returns the value of the variable,
then increments or decrements

Prefix vs. Postfix - Examples

int num, val = 12;
cout << val++; // displays 12,

// val is now 13;
cout << ++val; // sets val to 14,

// then displays it
num = --val; // sets val to 13,

// stores 13 in num
num = val--; // stores 13 in num,

// sets val to 12

int num, val = 12;
cout << val++; // displays 12,

// val is now 13;
cout << ++val; // sets val to 14,

// then displays it
num = --val; // sets val to 13,

// stores 13 in num
num = val--; // stores 13 in num,

// sets val to 12

Notes on Increment, Decrement

• Can be used in expressions:
result = num1++ + --num2;

• Must be applied to something that has a location in
memory. Cannot have:
result = (num1 + num2)++;

• Can be used in relational expressions:
if (++num > limit)

pre- and post-operations will cause different comparisons

• Can be used in expressions:
result = num1++ + --num2;

• Must be applied to something that has a location in
memory. Cannot have:
result = (num1 + num2)++;

• Can be used in relational expressions:
if (++num > limit)

pre- and post-operations will cause different comparisons

• Refer to Lab 5, Exe. 2, No. 2 in pg. 63.
• Explain the output

Exercise Week 8_1
• Refer to Lab 5, Exe. 2, No. 2 in pg. 63.
• Explain the output

Introduction to Loops:
The while Loop

Introduction to Loops:
The while Loop

• Loop: a control structure that causes a
statement or statements to repeat

• General format of the while loop:
while (expression)
statement;

• statement; can also be a block of
statements enclosed in { }

• Loop: a control structure that causes a
statement or statements to repeat

• General format of the while loop:
while (expression)
statement;

• statement; can also be a block of
statements enclosed in { }

while Loop – How It Works

while (expression)
statement;

• expression is evaluated
– if true, then statement is executed, and
expression is evaluated again

– if false, then the the loop is finished and
program statements following statement
execute

while (expression)
statement;

• expression is evaluated
– if true, then statement is executed, and
expression is evaluated again

– if false, then the the loop is finished and
program statements following statement
execute

The Logic of a while Loop

while Loop – example

How the Loop in Lines 9 through 13
Works

Flowchart of the Loop

while is a Pretest Loop

• expression is evaluated before the loop
executes. The following loop will never
execute:

int number = 6;
while (number <= 5)
{

cout << "Hello\n";
number++;

}

• expression is evaluated before the loop
executes. The following loop will never
execute:

int number = 6;
while (number <= 5)
{

cout << "Hello\n";
number++;

}

Watch Out for Infinite Loops

• The loop must contain code to make
expression become false

• Otherwise, the loop will have no way of
stopping

• Such a loop is called an infinite loop, because it
will repeat an infinite number of times

• The loop must contain code to make
expression become false

• Otherwise, the loop will have no way of
stopping

• Such a loop is called an infinite loop, because it
will repeat an infinite number of times

An Infinite Loop

int number = 1;
while (number <= 5)
{

cout << "Hello\n";
}

int number = 1;
while (number <= 5)
{

cout << "Hello\n";
}

• Refer to Lab 8, Exe. 1, No. 4(i-iii) in pg. 110.
• Draw a flowchart

Exercise Week 8_2
• Refer to Lab 8, Exe. 1, No. 4(i-iii) in pg. 110.
• Draw a flowchart

Using the while Loop for Input Validation

Using the while Loop for Input
Validation

• Input validation is the process of inspecting
data that is given to the program as input and
determining whether it is valid.

• The while loop can be used to create input
routines that reject invalid data, and repeat
until valid data is entered.

• Input validation is the process of inspecting
data that is given to the program as input and
determining whether it is valid.

• The while loop can be used to create input
routines that reject invalid data, and repeat
until valid data is entered.

Using the while Loop for Input
Validation

• Here's the general approach, in pseudocode:

Read an item of input.
While the input is invalid

Display an error message.
Read the input again.

End While

Read an item of input.
While the input is invalid

Display an error message.
Read the input again.

End While

Input Validation Example

cout << "Enter a number less than 10: ";
cin >> number;
while (number >= 10)
{

cout << "Invalid Entry!"
<< "Enter a number less than 10: ";

cin >> number;
}

cout << "Enter a number less than 10: ";
cin >> number;
while (number >= 10)
{

cout << "Invalid Entry!"
<< "Enter a number less than 10: ";

cin >> number;
}

Flowchart

Input Validation Example from
Program 5-4

• Refer to Lab 8, Exe. 2, No. 1 in pg. 118.
• Solve the problem
• Change the input validation to use the following psuedocode

Exercise Week 8_3
• Refer to Lab 8, Exe. 2, No. 1 in pg. 118.
• Solve the problem
• Change the input validation to use the following psuedocode

Read an item of input.
While the input is invalid

Display an error message.
Read the input again.

End While

Counters

Counters

• Counter: a variable that is incremented or
decremented each time a loop repeats

• Can be used to control execution of the loop
(also known as the loop control variable)

• Must be initialized before entering loop

• Counter: a variable that is incremented or
decremented each time a loop repeats

• Can be used to control execution of the loop
(also known as the loop control variable)

• Must be initialized before entering loop

Counters – example

Counters - example

The do-while Loop

The do-while Loop

• do-while: a post-test loop – executes the
loop, then test the expression

• General Format:
do
statement; // or block in { }
while (expression);

• Note that a semicolon is required after
(expression)

• do-while: a post-test loop – executes the
loop, then test the expression

• General Format:
do
statement; // or block in { }
while (expression);

• Note that a semicolon is required after
(expression)

The Logic of a do-while Loop

do-while Example

int x = 1;
do
{

cout << x << endl;
} while(x < 0);

int x = 1;
do
{

cout << x << endl;
} while(x < 0);

Although the test expression is false, this loop will
execute one time because do-while is a posttest
loop.

do-while Example

do-while Example

do-while Loop Notes

• Loop always executes at least once
• Execution continues as long as expression

is true, stops repetition when expression
becomes false

• Useful in menu-driven programs to bring user
back to menu to make another choice

• Loop always executes at least once
• Execution continues as long as expression

is true, stops repetition when expression
becomes false

• Useful in menu-driven programs to bring user
back to menu to make another choice

• Refer back to Lab 8, to Exe. 2, No. 1 in pg. 118.

• Modify Program 8.7 such that the data validation is implemented using a do-
while loop.

Exercise Week 8_4
• Refer back to Lab 8, to Exe. 2, No. 1 in pg. 118.

• Modify Program 8.7 such that the data validation is implemented using a do-
while loop.

The for Loop

The for Loop

• Useful for counter-controlled loop

• General Format:

for(initialization; test; update)
statement; // or block in { }

• No semicolon (;) after 3rd expression or after the)

• Useful for counter-controlled loop

• General Format:

for(initialization; test; update)
statement; // or block in { }

• No semicolon (;) after 3rd expression or after the)

for Loop - Mechanics

for(initialization; test; update)
statement; // or block in { }

1) Performinitialization
2) Evaluate test expression

– If true, execute statement
– If false, terminate loop execution

3) Execute update, then re-evaluate test expression

for(initialization; test; update)
statement; // or block in { }

1) Performinitialization
2) Evaluate test expression

– If true, execute statement
– If false, terminate loop execution

3) Execute update, then re-evaluate test expression

for Loop - Example

int count;

for (count = 1; count <= 5; count++)
cout << "Hello" << endl;

int count;

for (count = 1; count <= 5; count++)
cout << "Hello" << endl;

A Closer Look at the Previous
Example

Flowchart for the Previous Example

for Loop - Example

for Loop - Example

A Closer Look at Lines 13 through 14 in
Program 5-8

Flowchart for Lines 13 through 14
in Program 5-8

When to Use the for Loop

• In any situation that clearly requires
– an initialization
– a false condition to stop the loop
– an update to occur at the end of each iteration

• In any situation that clearly requires
– an initialization
– a false condition to stop the loop
– an update to occur at the end of each iteration

The for Loop is a Pretest Loop

• The for loop tests its test expression before
each iteration, so it is a pretest loop.

• The following loop will never iterate:

for (count = 11; count <= 10; count++)
cout << "Hello" << endl;

• The for loop tests its test expression before
each iteration, so it is a pretest loop.

• The following loop will never iterate:

for (count = 11; count <= 10; count++)
cout << "Hello" << endl;

for Loop - Modifications

• You can have multiple statements in the
initialization expression. Separate the
statements with a comma:

int x, y;
for (x=1, y=1; x <= 5; x++)
{

cout << x << " plus " << y
<< " equals " << (x+y)
<< endl;

}

Initialization Expression

• You can have multiple statements in the
initialization expression. Separate the
statements with a comma:

int x, y;
for (x=1, y=1; x <= 5; x++)
{

cout << x << " plus " << y
<< " equals " << (x+y)
<< endl;

}

Initialization Expression

for Loop - Modifications

• You can also have multiple statements in the update
expression. Separate the statements with a comma:

int x, y;
for (x=1, y=1; x <= 5; x++, y++)
{

cout << x << " plus " << y
<< " equals " << (x+y)
<< endl;

}

Update Expression

• You can also have multiple statements in the update
expression. Separate the statements with a comma:

int x, y;
for (x=1, y=1; x <= 5; x++, y++)
{

cout << x << " plus " << y
<< " equals " << (x+y)
<< endl;

}

for Loop - Modifications

• You can omit the initialization
expression if it has already been done:

int sum = 0, num = 1;
for (; num <= 10; num++)

sum += num;

• You can omit the initialization
expression if it has already been done:

int sum = 0, num = 1;
for (; num <= 10; num++)

sum += num;

for Loop - Modifications

• You can declare variables in the
initialization expression:

int sum = 0;
for (int num = 0; num <= 10; num++)

sum += num;

The scope of the variable num is the for loop.

• You can declare variables in the
initialization expression:

int sum = 0;
for (int num = 0; num <= 10; num++)

sum += num;

The scope of the variable num is the for loop.

• Refer to Lab 8, Exe. 1, No. 9 i, ii and iii in pg. 115-116.
• Solve the problem

Exercise Week 8_5
• Refer to Lab 8, Exe. 1, No. 9 i, ii and iii in pg. 115-116.
• Solve the problem

Keeping a Running Total

Keeping a Running Total

• running total: accumulated sum of numbers from
each repetition of loop

• accumulator: variable that holds running total
int sum=0, num=1; // sum is the
while (num <= 10) // accumulator
{ sum += num;

num++;
}
cout << "Sum of numbers 1 – 10 is"
<< sum << endl;

• running total: accumulated sum of numbers from
each repetition of loop

• accumulator: variable that holds running total
int sum=0, num=1; // sum is the
while (num <= 10) // accumulator
{ sum += num;

num++;
}
cout << "Sum of numbers 1 – 10 is"
<< sum << endl;

Keeping a Running Total - example

(Program Continues)

Keeping a Running Total - example

Sentinels

Sentinels

• sentinel: value in a list of values that indicates
end of data

• Special value that cannot be confused with a
valid value, e.g., -999 for a test score

• Used to terminate input when user may not
know how many values will be entered

• sentinel: value in a list of values that indicates
end of data

• Special value that cannot be confused with a
valid value, e.g., -999 for a test score

• Used to terminate input when user may not
know how many values will be entered

Sentinels - example

(Program Continues)

Sentinels - example

Using a Loop to Read Data from a File

Using a Loop to Read Data from a
File

• The stream extraction operator >> returns
true when a value was successfully read,
false otherwise

• Can be tested in a while loop to continue
execution as long as values are read from the
file:
while (inputFile >> number) ...

• The stream extraction operator >> returns
true when a value was successfully read,
false otherwise

• Can be tested in a while loop to continue
execution as long as values are read from the
file:
while (inputFile >> number) ...

Using a Loop to Read Data from a
File - example

• Refer to Program 6.4 in pg. 75.
• Modify the program:

1. To test error while opening the file.
2. Use the following while loop to read the file
while (inData>>val)

Exercise Week 8_6

• Refer to Program 6.4 in pg. 75.
• Modify the program:

1. To test error while opening the file.
2. Use the following while loop to read the file
while (inData>>val)

Deciding Which Loop
to Use

Deciding Which Loop to Use

• while: pretest loop; loop body may not be
executed at all

• do-while: posttest loop; loop body will
always be executed at least once

• for: pretest loop with initialization and
update expression; useful with counters, or if
precise number of repetitions is needed

• while: pretest loop; loop body may not be
executed at all

• do-while: posttest loop; loop body will
always be executed at least once

• for: pretest loop with initialization and
update expression; useful with counters, or if
precise number of repetitions is needed

Nested Loops

Nested Loops

• A nested loop is a loop inside the body of
another loop

• Inner (inside), outer (outside) loops:

for (row=1; row<=3; row++) //outer
for (col=1; col<=3; col++)//inner

cout << row * col << endl;

• A nested loop is a loop inside the body of
another loop

• Inner (inside), outer (outside) loops:

for (row=1; row<=3; row++) //outer
for (col=1; col<=3; col++)//inner

cout << row * col << endl;

Lines from Program 5-14

Nested Loops - Notes

• Inner loop goes through all repetitions for
each repetition of outer loop

• Inner loop repetitions complete sooner than
outer loop

• Total number of repetitions for inner loop is
product of number of repetitions of the two
loops.

• Inner loop goes through all repetitions for
each repetition of outer loop

• Inner loop repetitions complete sooner than
outer loop

• Total number of repetitions for inner loop is
product of number of repetitions of the two
loops.

• Refer to Lab 9, Exe. 1, No. 3(i to iv) in pg. 127
• Solve the problem

* you may want to study Program 9.1 (page 125) first before attempting the
question

Exercise Week 8_7
• Refer to Lab 9, Exe. 1, No. 3(i to iv) in pg. 127
• Solve the problem

* you may want to study Program 9.1 (page 125) first before attempting the
question

• Refer to Lab 3, Exe. 3, No. 2 in pg. 41.
• Based on your design write a complete C++ program.

Exercise Week 8_8
• Refer to Lab 3, Exe. 3, No. 2 in pg. 41.
• Based on your design write a complete C++ program.

Breaking Out of a Loop

Breaking Out of a Loop

• Can use break to terminate execution of a
loop

• Use sparingly if at all – makes code harder to
understand and debug

• When used in an inner loop, terminates that
loop only and goes back to outer loop

• Can use break to terminate execution of a
loop

• Use sparingly if at all – makes code harder to
understand and debug

• When used in an inner loop, terminates that
loop only and goes back to outer loop

Breaking Out of a Loop
// This program raises the user's number to the powers of 0through 10.
#include <iostream>
#include <cmath>
int main(){

int value;
char choice;
cout << "Enter a number: ";
cin >> value;
cout << "This program will raise " << value;
cout << " to the powers of 0 through 10.\n";
for (int count = 0; count <= 10; count++) {

cout << value << " raised to the power of ";
cout << count << " is " << pow(value, count);
cout << "\nEnter Q to quit or any other key ";
cout << "to continue. ";
cin >> choice;
if (choice == 'Q' || choice == 'q')

break;
}
return 0;

}

// This program raises the user's number to the powers of 0through 10.
#include <iostream>
#include <cmath>
int main(){

int value;
char choice;
cout << "Enter a number: ";
cin >> value;
cout << "This program will raise " << value;
cout << " to the powers of 0 through 10.\n";
for (int count = 0; count <= 10; count++) {

cout << value << " raised to the power of ";
cout << count << " is " << pow(value, count);
cout << "\nEnter Q to quit or any other key ";
cout << "to continue. ";
cin >> choice;
if (choice == 'Q' || choice == 'q')

break;
}
return 0;

}

• Write the output for following C++ statements.

for (int row=0; row<5; row++) {
for (int star = 0; star<20; star++){

cout<<'*';
if (star>=row)

break;
}
cout<<endl;

}

Exercise Week 8_9
• Write the output for following C++ statements.

for (int row=0; row<5; row++) {
for (int star = 0; star<20; star++){

cout<<'*';
if (star>=row)

break;
}
cout<<endl;

}

The continue Statement

The continue Statement

• Can use continue to go to end of loop and
prepare for next repetition
– while, do-while loops: go to test, repeat loop

if test passes
– for loop: perform update step, then test, then

repeat loop if test passes
• Use sparingly – like break, can make

program logic hard to follow

• Can use continue to go to end of loop and
prepare for next repetition
– while, do-while loops: go to test, repeat loop

if test passes
– for loop: perform update step, then test, then

repeat loop if test passes
• Use sparingly – like break, can make

program logic hard to follow

int testVal=0;
while (testVal++<10){

cout<<testVal<<" ";
if ((testVal%2)==1)

continue;
cout<<testVal<<" ";

}

The continue Statement -
example

• This program will display
1 2 2 3 4 4 5 6 6 7 8 8 9 10 10

int testVal=0;
while (testVal++<10){

cout<<testVal<<" ";
if ((testVal%2)==1)

continue;
cout<<testVal<<" ";

}

• Write the output for following C++ statements.

int x,y=0;
for (x=0;x<=5;x++) {

if (x<=3) {
y+=3;
continue;

}
y++;

}
cout<<y;

Exercise Week 8_10
• Write the output for following C++ statements.

int x,y=0;
for (x=0;x<=5;x++) {

if (x<=3) {
y+=3;
continue;

}
y++;

}
cout<<y;

Thank You

Q & A

