
Arithmetic Expression

Programming Techniques I
SCJ1013

Dr Masitah Ghazali

The cin Object

The cin Object

• Standard input object
• Like cout, requires iostream file
• Used to read input from keyboard
• Information retrieved from cin with >>
• Input is stored in one or more variables

• Standard input object
• Like cout, requires iostream file
• Used to read input from keyboard
• Information retrieved from cin with >>
• Input is stored in one or more variables

The cin Object

• cin converts data to the type that matches
the variable:

int height;
cout << "How tall is the room? ";
cin >> height;

• cin converts data to the type that matches
the variable:

int height;
cout << "How tall is the room? ";
cin >> height;

Displaying a Prompt

• A prompt is a message that instructs the user
to enter data.

• You should always use cout to display a
prompt before each cin statement.

cout << "How tall is the room? ";
cin >> height;

• A prompt is a message that instructs the user
to enter data.

• You should always use cout to display a
prompt before each cin statement.

cout << "How tall is the room? ";
cin >> height;

The cin Object

• Can be used to input more than one value:
cin >> height >> width;

• Multiple values from keyboard must be separated
by spaces

• Order is important: first value entered goes to first
variable, etc.

• Can be used to input more than one value:
cin >> height >> width;

• Multiple values from keyboard must be separated
by spaces

• Order is important: first value entered goes to first
variable, etc.

Reading Strings with cin

• Can be used to read in a string
• Must first declare an array to hold characters in

string:
char myName[21];

• myName is a name of an array, 21 is the number of
characters that can be stored (the size of the array),
including the NULL character at the end

• Can be used with cin to assign a value:
cin >> myName;

• Can be used to read in a string
• Must first declare an array to hold characters in

string:
char myName[21];

• myName is a name of an array, 21 is the number of
characters that can be stored (the size of the array),
including the NULL character at the end

• Can be used with cin to assign a value:
cin >> myName;

Exercise Week5_1
• Refer to Exercise 3 No. 1 in pg. 79.

• Solve the problem.
• Add array of characters to the output.

Sample of output:
Enter an integer: 7
Enter a decimal number : 2.25
Enter a single character : R
Enter an array of characters: Programming

• Refer to Exercise 3 No. 1 in pg. 79.

• Solve the problem.
• Add array of characters to the output.

Sample of output:
Enter an integer: 7
Enter a decimal number : 2.25
Enter a single character : R
Enter an array of characters: Programming

Mathematical Expressions

Mathematical Expressions

• Can create complex expressions using
multiple mathematical operators

• An expression can be a literal, a variable, or a
mathematical combination of constants and
variables

• Can be used in assignment, cout, other
statements:
area = 2 * PI * radius;
cout << "border is: " << 2*(l+w);

• Can create complex expressions using
multiple mathematical operators

• An expression can be a literal, a variable, or a
mathematical combination of constants and
variables

• Can be used in assignment, cout, other
statements:
area = 2 * PI * radius;
cout << "border is: " << 2*(l+w);

Order of Operations

In an expression with more than one
operator, evaluation is in this order:

()
- (unary negation), in order, left to right
* / %, in order, left to right
+ -, in order, left to right

In the expression 2 + 2 * 2 – 2

In an expression with more than one
operator, evaluation is in this order:

()
- (unary negation), in order, left to right
* / %, in order, left to right
+ -, in order, left to right

In the expression 2 + 2 * 2 – 2
evaluate
first

evaluate
second

evaluate
third

Example
int z, y=-5;
z= 8 - 3 + 9 / 2 + 2 * - y;
z= 8 - (3 + 9 / 2) + 2 * - y;// try this

Order of Operations

Show prove for the following expression

Associativity of Operators

• - (unary negation) associates right to left
• *, /, %, +, - associate left to right
• parentheses () can be used to override the

order of operations:
2 + 2 * 2 – 2 = 4
(2 + 2) * 2 – 2 = 6
2 + 2 * (2 – 2) = 2
(2 + 2) * (2 – 2) = 0

• - (unary negation) associates right to left
• *, /, %, +, - associate left to right
• parentheses () can be used to override the

order of operations:
2 + 2 * 2 – 2 = 4
(2 + 2) * 2 – 2 = 6
2 + 2 * (2 – 2) = 2
(2 + 2) * (2 – 2) = 0

Grouping with Parentheses

Algebraic Expressions

• Multiplication requires an operator:
Area=lw is written as Area = l * w;

• There is no exponentiation operator:
Area=s2 is written as Area = pow(s, 2);

• Parentheses may be needed to maintain order
of operations:

is written as
m = (y2-y1) /(x2-x1);

• Multiplication requires an operator:
Area=lw is written as Area = l * w;

• There is no exponentiation operator:
Area=s2 is written as Area = pow(s, 2);

• Parentheses may be needed to maintain order
of operations:

is written as
m = (y2-y1) /(x2-x1);12

12

xx
yym





Algebraic Expressions

Postfix expression

Prefix expression

Exercise Week5_2 [Lab5, Exe1,
No7, pg60]

• Write the formula in C++ statement.

When You Mix Apples and Oranges: Type Conversion

When You Mix Apples and
Oranges: Type Conversion

• Operations are performed between operands
of the same type.

• If not of the same type, C++ will convert one to
be the type of the other

• This can impact the results of calculations.

• Operations are performed between operands
of the same type.

• If not of the same type, C++ will convert one to
be the type of the other

• This can impact the results of calculations.

Hierarchy of Types

Highest:

Lowest:
Ranked by largest number they can hold

long double
double
float
unsigned long
long
unsigned int
int

Highest:

Lowest:
Ranked by largest number they can hold

long double
double
float
unsigned long
long
unsigned int
int

Type Conversion

• Type Conversion: automatic conversion of an
operand to another data type

• Promotion: convert to a higher type

• Demotion: convert to a lower type

• Type Conversion: automatic conversion of an
operand to another data type

• Promotion: convert to a higher type

• Demotion: convert to a lower type

Conversion Rules
1) char, short, unsigned short automatically

promoted to int
– Forarithmetic operation
char c=‘A’; cout<<6+c; // int

2) When operating on values of different data types, the lower
one is promoted to the type of the higher one.

int i=25; cout<<6.1+i; // float

3) When using the = operator, the type of expression on right
will be converted to type of variable on left

int x, y =25; float z=2.5;
x=y+z; //int

1) char, short, unsigned short automatically
promoted to int

– Forarithmetic operation
char c=‘A’; cout<<6+c; // int

2) When operating on values of different data types, the lower
one is promoted to the type of the higher one.

int i=25; cout<<6.1+i; // float

3) When using the = operator, the type of expression on right
will be converted to type of variable on left

int x, y =25; float z=2.5;
x=y+z; //int

Exercise Week5_3 [Lab5, Exe1,
No8, pg61]

• Given the following program, apply the
Coercion rules & identify the output
int main(){
char upperb='B';
int j=2, k=3;
double r=24.5, s=3.0, t;

cout<<"Rule 1 = "<<r+j;
cout<<"Rule 2 = "<<upperb+j; //'B'=66
t=r+j;
cout<<"Rule 3 = "<<t;

return 0;
}

• Given the following program, apply the
Coercion rules & identify the output
int main(){
char upperb='B';
int j=2, k=3;
double r=24.5, s=3.0, t;

cout<<"Rule 1 = "<<r+j;
cout<<"Rule 2 = "<<upperb+j; //'B'=66
t=r+j;
cout<<"Rule 3 = "<<t;

return 0;
}

Overflow and Underflow

Overflow and Underflow

• Occurs when assigning a value that is too large
(overflow) or too small (underflow) to be held
in a variable

• Variable contains value that is ‘wrapped
around’ set of possible values

• Different systems may display a warning/error
message, stop the program, or continue
execution using the incorrect value

• Occurs when assigning a value that is too large
(overflow) or too small (underflow) to be held
in a variable

• Variable contains value that is ‘wrapped
around’ set of possible values

• Different systems may display a warning/error
message, stop the program, or continue
execution using the incorrect value

#include <iostream>
using namespace std;
int main()
{
short testVar = 32767; //short max
cout << testVar << endl;
testVar = testVar + 1;
cout << testVar << endl;
testVar = testVar - 1;
cout << testVar << endl;
return 0;
}

Program Output
32767
-32768
32767

Overflow and Underflow
#include <iostream>
using namespace std;
int main()
{
short testVar = 32767; //short max
cout << testVar << endl;
testVar = testVar + 1;
cout << testVar << endl;
testVar = testVar - 1;
cout << testVar << endl;
return 0;
}

Program Output
32767
-32768
32767

Type Casting

Type Casting

• Used for manual data type conversion
• Useful for floating point division using ints:
double m;
m = static_cast<double>(y2-y1)

/(x2-x1);
• Useful to see int value of a char variable:
char ch = 'C';
cout << ch << " is "

<< static_cast<int>(ch);

• Used for manual data type conversion
• Useful for floating point division using ints:
double m;
m = static_cast<double>(y2-y1)

/(x2-x1);
• Useful to see int value of a char variable:
char ch = 'C';
cout << ch << " is "

<< static_cast<int>(ch);

Type Casting - example

C-Style and Prestandard Type Cast
Expressions

• C-Style cast: data type name in ()
cout << ch << " is " << (int)ch;

• Prestandard C++ cast: value in ()
cout << ch << " is " << int(ch);
• Both are still supported in C++, although
static_cast is preferred

• C-Style cast: data type name in ()
cout << ch << " is " << (int)ch;

• Prestandard C++ cast: value in ()
cout << ch << " is " << int(ch);
• Both are still supported in C++, although
static_cast is preferred

Exercise Week5_4

• Correct the error of the program using type
casting
int main(){
char upperb='B';
int j=2, k=3;
double r=24.5, s=3.0, t;

t=r- static_cast<int>(s*3)%(2+j)/k;

cout<<"t= "<<t;
return 0;
}

• Correct the error of the program using type
casting
int main(){
char upperb='B';
int j=2, k=3;
double r=24.5, s=3.0, t;

t=r- static_cast<int>(s*3)%(2+j)/k;

cout<<"t= "<<t;
return 0;
}

Named Constants

Named Constants

• Named constant (constant variable): variable
whose content cannot be changed during
program execution

• Used for representing constant values with
descriptive names:
const double TAX_RATE = 0.0675;
const int NUM_STATES = 50;

• Often named in uppercase letters

• Named constant (constant variable): variable
whose content cannot be changed during
program execution

• Used for representing constant values with
descriptive names:
const double TAX_RATE = 0.0675;
const int NUM_STATES = 50;

• Often named in uppercase letters

Named Constants - example

Constants and Array Sizes

• It is a common practice to use a named
constant to indicate the size of an array:

const int SIZE = 21;
char name[SIZE];

• It is a common practice to use a named
constant to indicate the size of an array:

const int SIZE = 21;
char name[SIZE];

const vs. #define

• #define – C-style of naming constants:
#define NUM_STATES 50

– Note no ; at end

• Interpreted by pre-processor rather than
compiler

• Does not occupy memory location like
const

• #define – C-style of naming constants:
#define NUM_STATES 50

– Note no ; at end

• Interpreted by pre-processor rather than
compiler

• Does not occupy memory location like
const

Exercise Week5_5

• Refer to Lab 6 Exe. 3 No. 3 in pg. 80.

• Solve the problems using constant values to
represent the conversion factors.

• Refer to Lab 6 Exe. 3 No. 3 in pg. 80.

• Solve the problems using constant values to
represent the conversion factors.

Multiple Assignment and
Combined Assignment
Multiple Assignment and
Combined Assignment

Multiple Assignment and
Combined Assignment

• The = can be used to assign a value to
multiple variables:
x = y = z = 5;

• Value of = is the value that is assigned
• Associates right to left:

x = (y = (z = 5));

• The = can be used to assign a value to
multiple variables:
x = y = z = 5;

• Value of = is the value that is assigned
• Associates right to left:

x = (y = (z = 5));
value
is 5

value
is 5

value
is 5

Combined Assignment

• Look at the following statement:

sum = sum + 1;

This adds 1 to the variable sum.

• Look at the following statement:

sum = sum + 1;

This adds 1 to the variable sum.

Other Similar Statements

Combined Assignment

• The combined assignment operators provide
a shorthand for these types of statements.

• The statement
sum = sum + 1;
is equivalent to
sum += 1;

• The combined assignment operators provide
a shorthand for these types of statements.

• The statement
sum = sum + 1;
is equivalent to
sum += 1;

Combined Assignment Operators

Try:
d -= 5 * 3 + a++;

Try:
d -= 5 * 3 + a++;

Thank You

Q & A

