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Introduction

 The z-transform is the discrete-time counterpart of the Laplace
transform.

 It can be used to assess the characteristic of discrete-time
systems in terms of its impulse response and frequency response.

 The z-transform can be used determine the solution to the
difference equation.
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 For a given sequence x[n], its z-transform X(z) is
defined as

Definition of Z-Transform
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A signal is defined as
x(n) = an n  0

= 0 elsewhere

(Open form)

(Close form)

From the close form solution, there is a pole where z = a and a zero.

Z-Transform Example
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Z-Plane and Stability
 All the possible values of X(z) lies in the z-plane.
 The maximum are at the poles and the zero value are at the zeros.
 For causal sequence, the system is stable if the poles are in the unit

circle.

(a)  Stable System                                   (b) Unstable system
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Solution for Difference Equation and
Transfer Function

 The z-transform can be used to determine the solution to difference
equation. Given that the input-output relationship of a linear time-
invariant system is as follows

y(n) = a(1)y(n-1) + a(2)y(n-2) = b(0)x(n) + b(1)x(n-1) + b(2)x(n-2)

 The z-transform is
Y(z) + a(1)Y(z) z-1+ a(2)Y(z) z-2 = b(0)X(z) + b(1)X(z) z-1 + b(2)X(z) z-2

where H(z) is the transfer function.
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General Form of the Transfer Function

 For more general case, the transfer function is in the form

where N is the polynomial order. The transfer function when
factorized in term of the roots is
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Inverse Z-Transform
 The system impulse response h(n) is obtained from H(z) by

taking the inverse z-transform. If the following transfer function
is used as example

 The application of the partial fraction expansion results in
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Relationship between the
Z-Transform and Fourier Transform

 The Fourier transform can be obtained from the z-transform by
making the substitution z = exp (j2f )

 A transfer function is

 The Fourier transform is
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 The Fourier transform when defined in terms of the magnitude
and phase is

       
22

4sin
2
12sin4cos

2
12cos1

1))2(exp(







 






 



ffff

fjH





Relationship between the
Z-Transform and Fourier Transform

       
22

4sin
2
12sin4cos

2
12cos1

1))2(exp(







 






 



ffff

fjH





   

    























 







 

 

ff

ff
fj






4cos
2
12cos1

4sin
2
12sin

tan))2(exp( 1

10



Frequency Response of
Transfer Function

11


