
SEE3243

Digital System

Lecturers :
Muhammad Mun'im Ahmad Zabidi

Week 1: Introduction

“Teacher only opens the door for you, you have to enter by yourself”
Old Chinese Proverb

Muhammad Mun'im Ahmad Zabidi
Muhammad Nadzir Marsono
Kamal Khalil

Why this course?
• This course is an extension to SEE 1223. It is about

digital logic design.

• Both types of circuits (digital and analogue) are used

in practice, but digital circuits are much more

prevalent than analogue circuits. Why?

• Analogue data is more precise than digital data

because digital data (discrete) is an approximation of

analogue data (continuous).

• Digital systems are usually more accurate than

analogue systems because they are less vulnerable to

noise.

1-2

Syllabus

Topic Week
1. Introduction: Hierarchical design, CAD software.
2. Logic simplification: SOP/POS logic, De-Morgan

Theorem, Entered-variable Karnaugh map, Introduction to
hazard & glitches.

3. Logic design using MSI components and PLD:

1
1

23. Logic design using MSI components and PLD:
multiplexor, decoder, ROM, PLA, PAL, GAL, tristate,
introduction to FPGA & CPLD.

4. Arithmetic circuits: half-adder, full adder, ripple-carry
adder, subtractor, CLA adder, ALU, combinational
multiplier, Design Trade-off.

5. Sequential circuits: synchronous & asynchronous circuits,
latches & flip-flops, characteristic equations, metastability.

2

2

1

1-3

Syllabus (cont’d)

Topic Week
6. Registers & Counters: Registers File, shift registers,

counters, state diagrams, synthesis of synchronous counters.
7. Finite State Machines (FSM): State diagrams for FSM,

Moore & Mealy models, design of sequence detectors, state
encoding.

1

2

encoding.
8. Advanced FSM Realization: Design of up/down counter

without and with enable. Design of vending machine.
Design of traffic light controller.

9. Case Studies: Datapath and control units

2

2

1-4

Book(s)
• Textbook:

– Randy H. Katz and Gaetano Borriello, Contemporary Logic

Design. 2nd ed. Upper Saddle River, NJ: Pearson Education,

Inc., 2006.

• Other references

– Donald D. Givone, Digital Principles and Design.– Donald D. Givone, Digital Principles and Design.

International ed. Singapore: McGraw-Hill, 2003.

– Stephen Brown and Zvonko Vranesic, Fundamentals of

Digital Logic with VHDL Design. 2nd ed. Singapore:

McGraw-Hill, 2005.

– Alan B. Marcovitz, Introduction to Logic Design. 2nd ed.

New York, NY: McGraw-Hill, 2005.

1-5

Misc – CAD skills
• We will use Quartus II - won’t be taught in class.

• Familiarize yourself with this EDA.

• You have to learn it yourself. Tutorials will be given to

assist you.

• Lecture notes will be made available at UTM E-• Lecture notes will be made available at UTM E-

Learning Server <http://elearning.utm.my>

1-6

Major Topics To Be Discussed
• Fundamental digital design skills (data types,

Boolean algebra, minimization techniques)

• Combinational circuits (circuits without

memory)

• Introduction to arithmetic circuitry• Introduction to arithmetic circuitry

• Sequential circuits (circuits with memory)

• Finite/Algorithmic State Machines. Some case

studies.

1-7

Assumptions
• You’re all well versed in

– Data and number representation and operations

– Boolean algebra

– Logic gates

– Simple minimization techniques (up to 4-variable – Simple minimization techniques (up to 4-variable

Karnaugh maps)

• All these topics you’d learnt in SEE 1223.

1-8

What you can expect
• Exercises, for you to do on your own

• Usage of Quartus II CAD

1-9

Hierarchical Design
• Definition: Hierarchy,

or “divide and

conquer” .

• Dividing a module into

sub-modules and then

System Specification

Functional
Architecture Design

Function Verification

System Level
Design Flow

Behavioural
Representation

sub-modules and then

repeating this

operation on the sub-

modules until the

complexity of the

smaller parts becomes

manageable. 1-10

Logic Design

Logic Verification

Implementation
(Gate/ Transistor/

Layout Level)

Logic (Gate
Level)

Representation

Top-down vs Bottom-up
• Top-down design flow provides an excellent

design process control.

• In reality, there is no truly unidirectional

approach.

• Both top-down and bottom-up approaches • Both top-down and bottom-up approaches

have to be combined. In system level design,

in order to fit the system into the allowable

constraint (area, speed, power consumption)

some functions may have to be removed and

the design process must be repeated (may

require significant modifications). 1-11

Development Process

Required product

Design specifications

Initial design

Simulation Redesign

No

1-12

Design correct?

Prototype implementation

Testing

Meets specifications?

Finished product

Minor errors?

Make corrections

No

Yes

No

Yes

Yes

No

Design Flow for Logic Circuits

Design interconnection between blocks

Design one block Design one block

Partition

Design concept
A

B

C

1-13

Functional simulation of complete system

Correct?

Physical mapping

Timing simulation

Correct?

Implementation

No

Yes

No

Yes

D

Concept of Regularity, Modularity

and Locality• Regularity

– Means that the hierarchical decomposition of a

large system must be simple and similar as much

as possible. It must exists at all levels of

abstraction.abstraction.

– Eg: At the logic level, identical gate structures can

be used, etc. If the designer has a small library of

well-defined and well-characterized basic building

blocks, a number of different functions can be

constructed by using this principle.

1-14

Concept of Regularity, Modularity

and Locality

• Modularity

– Hierarchical functional blocks must be well-

defined – functionality and interfaces.

– Each block can be designed independently– Each block can be designed independently

(relatively from each other).

– All of the blocks can be combined with ease to

form the large system.

– Enables the parallelization of the design process.

1-15

Concept of Regularity, Modularity

and Locality• Locality

– The well-characterized definition of interfaces for

each module in the system stays at the local level.

– Thus, the internals of each module become

unimportant to the exterior modules.

– Connections are mostly between neighbouring

modules, avoiding long-distance connections as

much as possible to avoid interconnect delay.

Time-critical operations should be performed

locally.

1-16

Where Are You Now?
• Assumption: you know basics of logic theory,

Boolean algebra, Karnaugh map and stuffs

from SEE 2222.

• This is only for review. Get a book!

• Lets take a sneak review…• Lets take a sneak review…

• Slides 1-19 to 1-35 are only for review. You can

skip these slides.

1-17

Logic Gates: Revisited

x
y f

0
0
1
1

0
1
0
1

0
0
0
1

x y f

x y f

Name Graphical
Symbol

Algebraic
Function

Truth Table

AND f = x.y

OR f = x + y

1-18

x
y f

0
0
1
1

0
1
0
1

0
1
1
1

x y f

0
1

1
0

x f

x f
0
1

0
1

x f

OR f = x + y

INVERTER f = x’

BUFFER f = x

x f

Logic Gates: Revisited
Name Graphical

Symbol
Algebraic
Function

Truth Table

NAND f = (x.y)’

NOR f = (x + y)’

x
y f

0
0
1
1

0
1
0
1

1
1
1
0

x y f

0 0 1

x y f

1-19

NOR f = (x + y)’

EX-OR f = x’y + xy’

EX-NOR f = x’y’ + xy

x
y f

x
y f

x
y f

0
0
1
1

0
1
0
1

1
0
0
0

0
0
1
1

0
1
0
1

0
1
1
0

x y f

0
0
1
1

0
1
0
1

1
0
0
1

x y f

Boolean Expression
• Boolean expressions are a much better form for representing

digital circuits because it is much easier to manipulate and

simplify.

• A Boolean expression is an expression formed with:

– binary variables

– the binary operators OR and AND– the binary operators OR and AND

– the unary operator NOT

– parentheses

– an equal sign

• For example,

– F = x'y + z F is 1 when z = 1 OR when x = 0 AND y = 1.

1-20

Operator Precedence
• The precedence of operations is as follows:

– parentheses

– NOT

– ANDAND

– OR

1-21

Boolean Algebra
• Definition: Theorems that are used at design time to

manipulate and simplify Boolean expressions for

easier and less expensive implementation.

• Any Boolean expression can be represented using

only AND, OR, and NOT operations.

• May need to use Boolean algebra to change the form

of a Boolean expression to better utilize the types of

gates provided by the component library being used.

• A Boolean variable, x, can have two values, typically

1 and 0 (on and off)

1-22

Properties of Boolean Algebra
• Identity Elements

– X+0=X

– X • 1=X (Dual of previous)

• Commutative property

– A+B=B+A

– A• B=B• A (Dual of previous)

• Associative property

� Distributive of ‘+ over •’
and ‘• over +’
� A+(B•C) = (A+B) • (A+C)
� A• (B+C) = (A•B)+(A•C)

� Existence of the
complement• Associative property

– A + (B+C) = (A+B)+C

– A• (B•C) = (A•B)•C

1-23

complement
� A+A’ = 1
� A•A’ = 0

Duality
• Every Boolean expression has a dual

• If the expression is valid, then the dual is valid

• To obtain the dual:

– Replace all + with · and all · with +
• A+(BC) = (A+B)(A+C)

• A(B+C) = AB+AC

– Keep parenthesis order

– Replace ‘1’ with ‘0’ and vice versa
• Duality can be used to prove theorems and allow simple transformation of

Boolean functions

• Also makes it easy to find other forms of a theorem

1-24

Variable Theorems
• Idempotency

– A+A = A

– A·A = A

• Null elements for +

and · operators

� Absorption
� A+AB = A
� A(A’+B) = AB
� AB+AB’ = A
� (A+B)(A+B’) = A
� AB+AB’C = AB+AC
� (A+B)(A+B’+C) = (A+B)(A+C)

– A+1 = 1

– A·0 = 0

• Involution
– (A’)’ = A

1-25

� (A+B)(A+B’+C) = (A+B)(A+C)

� DeMorgan’s
� (A+B)’= A’·B’
� (A·B)’= A’+B’

� Consensus
� AB+A’C+BC=AB+A’C

Some Definitions

• Literal - a variable or complement of the variable in terms

• Product term - single literal or product (·) of two or more literals,

– e.g.: ABC

• Sum term - single literal or sum (+) of two or more literals,

– e.g.: A+B+C

• minterm – normal product term of n literals that is 1 for exactly one set of input

values

– 2n unique n-variable minterms– 2n unique n-variable minterms

– 4-variable minterm – A’B’C’D’, A’B’C’D …. ABDC (16 possible terms)

• maxterm – normal sum term of n literals , expression that is 0 for exactly one set
of input values

– 2n unique n-variable maxterms

– 4-variable maxterm – A+B+C+D, ….. A’+B’+C’+D’ (16 possible terms)

1-26

Minterm – Maxterm relationship

• Mi = mi’

• Proof

– At row 5,
m5 = AB’C

m5’= (AB’C)’

Decimal
Number

ABC Minterm Maxterm

0 000 A’B’C’=m0 A+B+C=M0

1 001 A’B’C=m1 A+B+C’=M1

2 010 A’BC’=m2 A+B’+C=M2

3 011 A’BC=m3 A+B’+C’=M3m5’= (AB’C)’

= A’ + B + C’

= M5

1-27

4 100 AB’C’=m4 A’+B+C=M4

5 101 AB’C=m5 A’+B+C’=M5

6 110 ABC’=m6 A’+B’+C=M6

7 111 ABC=m7 A’+B’+C’=M7

Forms of Boolean Expression
Complement
• Use DeMorgan's theorem

• DeMorgan's theorem states:

– (X + Y)' = X' * Y'

• DeMorgan's theorem can be extended to 3 or more variables.

• Example• Example

– Given (X + Y + Z)‘ Let A = Y + Z

– (X + A)' = (X' * A')

– Substituting back in Y + Z

– = (X' * (Y + Z)')

– = X' * Y' * Z'

1-28

• The compliment of a function can be obtained by interchanging AND's and

OR's and complementing each literal.

• Parenthesis may need to be included to keep the order of the evaluation.

• Remember, that in the absence of parenthesis, AND has precedence over

OR operation.

1-29

Canonical SOP and POS
• Canonical SOP Of A Function

– a function represented as a sum of minterms

– F(A,B,C) = A’BC’+ABC’+A’BC+ABC

• Canonical POS Of A Function

– a function represented as a product of maxterms– a function represented as a product of maxterms

– F = (A+B’+C)(A+B’+C’)(A’+B+C’)

• Any function can be represented as a

canonical POS or SOP form, which is either an

two-level AND-OR tree or a OR-AND tree

1-30

Example

• In SOP

– x’y’z+ x’yz’+ x’yz+ xyz

– Σm(1,2,3,7)

• In POS

– (x+y+z) (x’+y+z) (x’+y+z’) (x’+y’+z)

– ΠM(0,4,5,6)

• For the same function F

Row xyz Minterm Maxterm F

0 000 x’y’z’ x+y+z 0

1 001 x’y’z x+y+z’ 1

2 010 x’yz’ x+y’+z 1

3 011 x’yz x+y’+z’ 1
• For the same function F

– Σm(1,2,3,7)= ΠM(0,4,5,6)

1-31

4 100 xy’z’ x’+y+z 0

5 101 xy’z x’+y+z’ 0

6 110 xyz’ x’+y’+z 0

7 111 xyz x’+y’+z’ 1

Don’t Cares

• Very often, the specification of a function is incomplete

• Output state is unimportant for that particular set of inputs or input state

never occurs

• Any input combination whose state is unimportant is a “don’t care” state

(d in SOP and D in POS)

• Useful feature for minimization of states

• Example, with minterms AB’C (101) and ABC’(110) are don’t cares• Example, with minterms AB’C (101) and ABC’(110) are don’t cares

– Minterm – F(A,B,C) = Σm(0,1,2) + Σd(5,6)

– Maxterm – F(A,B,C) = ΠM(3,4,7) . ΠD(5,6)

1-32

Limitation of Boolean Algebra

• There is no algorithm you can follow that is guaranteed to lead to the

simplest form of the expression

• Given any intermediate result there is no way to tell if it is in fact the

simplest form of the expression

1-33

DIY Example

• Given the following SOP expression, minimize it:

– F(x,y,z) = x’y’z’ + x’y’z + xy’z’ + xy’z + xyz’

• Minimization via the application of Boolean algebra is error prone,

especially if there are large equations.

1-34

