
Pointers

Associate Prof. Dr. Norazah Yusof

Programming Technique II
– SCJ1023

2

• A pointer is a derived data type
– A data type built from one of the standard

data type.

• Pointer variables contain memory address
of a variable
– Indirectly references a value.

What is a pointer?

3

• A pointer variable is a special type of
variable that holds the address of another
variable.

• Example:

 Variable b in is a pointer variable which is
containing the address of variable a.

What is a pointer variable?

b

100 a

4

• & is the address operator in C++.

– Is used to get the address of a variable.

– Provides a pointer constant to any named
location in memory.

• Example 1: Display the address of an integer
variable.
int Nom;

cout << &Nom;

What is address operator in C++?

Nom

&Nom

5

• The dereferencing operator, *, is used to get
the variable that a pointer variable is
pointing to.

• This operator can only be applied to pointer
variables (not to ordinary variables).

What is dereferencing in C++?

6

• Pointer variable stores the address of a
variable.
char Huruf;

int Nom;

char * x;

int * y;

Example of declaration of pointer

variables

Huruf

&Huruf

Nom

&Nom

x

y

??

??

7

Example of declaration of pointer
variables

C++ declarations:

char Huruf;

int Nom;

char * x;

int * y;

Contents of variables:

Huruf = ‘A’;

Nom = 85;

x = &Huruf;

y = &Nom;

Huruf

&Huruf A

Nom

&Nom 85

x
&Huruf

y
&Nom

8

Example of initialization of pointer
variables

C++ declarations:

int x=25;

int *p = &x;

int *p = &x;

int *p;

p = &x;

9

Example of assigning of pointer to
another pointer

C++ declarations:

int x = 25, y=100;

int *ptr1;

int *ptr2 = &y;

Assigning values from pointer variables:

ptr1 = &x;

Assigning pointer address to another pointer

 ptr2 = ptr1;

10

Output

The value in x is 25

The address of x is 0x0012ff88

The address in ptr1 is 0x0012ff88

The address in ptr2 is 0x0012ff88

11

• To access to the pointed variable, use * as
the indirection operator.

• Various operations can be done using
indirection operator.

– Assign value

– Input/output operations

– Arithmetic operations

– Relational/logical expressions

Accessing variables through

pointer

12

Relationship between Arrays and
Pointers

• Array name is the starting address of an array

 int vals[] = {4, 7, 11};

 cout << vals; // displays

 // 0x4a00

 cout << vals[0]; // displays 4

4 7 11
Example of starting address of vals:

 0x4a00

13

Relationship between Arrays and
Pointers

• Array name can be used as a pointer constant:

 int vals[] = {4, 7, 11};

 cout << *vals; // displays 4

• Pointer can be used as an array name:

 int *valptr = vals;

 cout << valptr[1]; // displays 7

14

Array Access

• Array elements can be accessed in many ways:

Array access method Example

array name and [] vals[2] = 17;

pointer to array and [] valptr[2] = 17;

array name and subscript

arithmetic

*(vals + 2) = 17;

pointer to array and subscript

arithmetic

*(valptr + 2) = 17;

15

Pointer Arithmetic

• Operations on pointer variables:

Operation Example

++, -- valptr++; // points at 7

valptr--; // now points at 4

+, - (pointer and int) cout << *(valptr + 2); // 11

+=, -= (pointer

and int)

valptr = vals; // points at 4

valptr += 2; // points at 11

- (pointer from pointer) cout << valptr–val; // difference

//(number of ints) between valptr

// and val

16

Comparing Pointers

• Relational operators (<, >=, etc.) can be used
to compare addresses in pointers

• Comparing addresses in pointers is not the
same as comparing contents pointed at by
pointers:
 if (ptr1 == ptr2) // compares

 // addresses

 if (*ptr1 == *ptr2) // compares

 // contents

17

Pointers as Function Parameters
• A pointer can be a parameter

• Works like reference variable to allow change to
argument from within function

• Requires:

1) asterisk * on parameter in prototype and
heading

void getNum(int *ptr); // ptr is pointer to an int

2) asterisk * in body to dereference the pointer

 cin >> *ptr;

3) address as argument to the function, use &
getNum(&num); // pass address of num to getNum

