OPENCOURSEWARE

SEE 3223 Microprocessor Systems

2: 68000 Architecture

Muhammad Mun’im Ahmad Zabidi (munim@utm.my)

I
Innovative.Entrepreneurial.Global

Aims

ocw.utm.my @ UTM

68000 Architecture

— To review the the architecture of the 68000 microprocessor.

* Intended Learning Outcomes
— At the end of this module, students should be able to:

Briefly explain the history of microprocessor and the 68000 family
Describe the term programming model

Describe the programmer-visible registers in the 68000

Describe how the memory is accessed in the 68000

Describe and use the three simplest addressing modes of the 68000: direct,
absolute and immediate

Be able to access and understand the information presented in the 68000
Programmer’ s Reference Manual

MC68000 introduced by Motorola in 1979.
Notable sightings:

Why 68000 for learning microprocessors?

ocw.utm.my @ UTM

68000/ColdFire Background

Used in the Sun, the first ever workstation
Used in the Macintosh, first ever GUI personal computer

Used in early versions of PalmPilot PDA

Powerful & simple instruction set

Sophisticated interfacing capabilities

Able to support high-level language and operating systems

Flat memory map (versus segmented memory used in Intel 80x86)
The most popular pP in academia

Internally, MC68000 has 32 bit data paths and 32-bit instructions

interfaces with external components using a 16-bit data bus. So a programmer
considers it 32-bit chip while a system designer considers it a 16-bit chip.

Hence the “16-/32-bit chip~ designation.

The original 68000 was available in 64-bit DIP or 68-pin PLCC.

ocw.utm.my @ UTM

68000/ColdFire Versions

68000 family has many versions.

— 680x0 means 68000, 68008, 68010, 68020, 68030, 68040 and 68060.

— Newer versions are “upward compatible” with older versions.

— The family is also affectionately called 68k or MC68Kk.

— Most commonly found members are 68000, 68020, CPU32 and ColdFire.
The family includes 16-bit peripherals chips.

— The 68000 can use 68000-type peripherals chips for higher performance or older
6800-type peripherals for lower cost.

ColdFire is the current version
— ‘RISC’ ified 68000 processor core.
— Smaller, less power used than normal 68020.
— A ColdFire chip is an embedded processor with integrated peripheral
— You can find it in some HP laserjet printers

Today, the 68k family is made by Freescale Semiconductors. >~ freescale

samiconductor

Data bus (bits)

Address Bus
(bits)

Data cache
(bytes)

Instruction cache
(bytes)

Memory
Management Unit

Floating-Point
Unit

Max Speed (MHz)

Performance
(MIPS)

* 68008 and 68010 are end-of-lifed (EOL) meaning no longer in production.

ocw.utm.my

68k Processor Family

48-pin 52-pin "
- 68008 * | 68008 * 68000 68010 68020 68030 68040 68060

20

22

8/16 **

24

20

24

32

256

Off-chip

33

10

32

256

256

On-chip

Off-chip

50

18

** Original 68000 has 16-bit bus. Current 68000 has selectable 8- or 16-bit bus.

32

4096

4096

On-chip

On-chip

40

44

©UTM

I TELON AT

32
8192

8192
On-chip

On-chip
75

110

ocw.utm.my @ UTM

68000 Hardware

* Specifications o oo
— 32-bit data and address registers —
— 16-bit data bus i
— 24-bit address bus |
— 14 addressing modes ‘ »
— Memory-mapped input-output | e e
— Program counter _
— 56 instructions :
— 5 main data types i :
— 7 interrupt levels BE
— Clock speeds: 4 MHz to 12.5 MHz [7|~
— Synchronous and asynchronous data transfers

. ocw'l.ltm'my ®©UTM
What is " Microprocessor

Architecture”

 For our purposes the architecture is the software or programmer’ s
model of the microprocessor

— The CPU registers available to the programmer
— The basic instructions the CPU can perform
— The ways these instructions can specify a memory location

— The way data is organized in memory
— How the CPU accesses & controls peripheral devices

68000 Programming Model

e 32-bit longword
I 16-bit word
| 8-bit byte
31 1615 87 0

Dig ;Dys* * * DggiDo7 * + * Dgg

DO
D1
D2

D3

D5
D6

D7

Eight general-
purpose data
registers

31 16 15 0
Agy . Asg 1 Ass R A | AO
: Al
i Eight general-
: A2 purpose address
: registers.
: A3 Note that A7
4 is also a stack
] A4 pointer for
’ subroutine
: AS return addresses
Z A6
: A7
31 24 23 0
: Program counter
1514131211109 8 7 6 54 32 1 0
T (S| | |'e/M|lo X[N[z|v|C]| Status register
le la al
s) B =
Status Condition code
byte register CCR
2-8

Data
reqgisters

Address
reqgisters

Stack
pointer

Program
counter

Status
Register

DO-D7

AO-A6

SP

PC

SR

8

ocw.utm.my @ UTM

68000 Registers
mmmm

blt

32
bit

32
bit

32
bit

16
bit

I FIOLON A

Stores 8-/16-/32-bit data

Stores 16-/32-bit pointers
(addresses of data)

Store a pointer to a group of data
known as the stack. Also known as
A7. There’s two stack pointers: USP
and SSP.

Contains the address of the NEXT
instruction to fetch and execute

Contains information on the results
of the last instruction. Consists of
the system byte and the condition
codes register (CCR)

Status Register General Idea

ocw.utm.my

Register

Status register stores an "analysis” of the last operation

Register
"_\/_"7 X :
/ N g
// z .
ALU / : ;
Register

involving the ALU

OO P>Prmm

©UIM

I TEOLON N

e AR

ocw.utm.my @ UTM

Control/Status Register

* System Byte
— Only modifiable is supervisor mode
— Details in later modules

C Set if a carry or borrow is generated. Cleared
. therwise.
* User Byte: CCR ofherwise
Vv Set if a signed overflow occurs. Cleared
— For user-level programs otherwise.
— Behavior depends on instruction y4 Set if the result is zero. Cleared otherwise.
N Set if the result is negative. Cleared otherwise.

Retains the carry bit for multi-precision
Byte Sistem Byte Pengguna arithmetic
Systems responds to interrupts with a level

N
N
o

15 14 13 12 11 10 9 8 7 6 5 4 3 .
T |S 211110 X|N| z|v|/C| CCR higher than |
v LCarry S 1 means CPU in supervisor mode, 0 means
user mode
oVerflow
Zero T 0 for normal operation, 1 to stop the CPU after
, EVERY instruction for runtime debugging

Negative
eXtend
Interrupt Mask
Supervisor

Trace

ocw.utm.my @ UTM

68000 Data Sizes

Bit (“binary digit”)

— Smallest amount of data

— 1 bit stores either binary 0 or binary 1.
BCD (“binary coded decimal”)

— 4 bits that represents decimal 0 to 9
— Used by only 3 instructions

Byte /7 6 5 4 3 2 1 0
— 8 bits that is processed as one unit

Word

— 16 bits that is processed as one uni o 14 13 12 17 10 6 8 7 6 o5 4 3 2 7. 0
Longword

— 32 bits that is processed as one unit - Bait atas P> Bait bawah———]

(MSB) (LSB)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(g Kata atas L Kata bawah |l

ocw.utm.my @ UTM

I FIOLON A

Byte Addressing

* Bytes can be stored in any even or odd location

Alamat Alamat
000000 | 10101010 | 11000101 | 000001 0 bait O bait 1 1
000002 | ooo11001 | 11110010 | 000003) bait 2 bait 3 3
000004 000005 4 bait 4 bait 5 5
6 bait 6 bait 7 7
FFFFFC | 11001000 | 11111111 | FFFFFD
FFFFFE | ooo11010 | 01010111 | FFFFFF
Alamat Alamat
genap ganijil

ocw.utm.my @ UTM

Word Addressing

Word must stored at even Alamat 15 0 Alamat
addresses 0 kata 0 1

2 kata 1 3
Attempt to store word at 4 kata 2 5
odd address result in a
”trap”

Trap : recoverable crash Contoh: ABCD,¢4 disimpan di alamat O.

0000004 (1010 1011]1100 1101{0000001 44

ocw.utm.my

Longword Addressing

Longword can be stored at
even address

Longword requires two
memory accesses (two rows in
memory map)

Alamat 15

0 Alamat

0

kata panjang 0

o A~ DN

kata panjang 1

(0¢]

1

© N 0o W

Contoh: ABCD1234,4 disimpan di alamat 0.

000000
00000244

1010 1011

1100 1101

0001 0010

0011 0100

0000001 44
000000314

Register Transfer Language (RTL)

ocw.utm.my

©

* Asimple notation to describe the operations carried out by CPU
clearly and unambiguously

— We will use it to describe the function of instruction

UTM

I FIOLON A

100 means “#100” or “the number 100”

[M(4)] means “contents stored in memory location 4”
[M(4)] = 100 means “memory location 4 contains #100”
[M(4)] < 25 means “load number 25 into memory location 4”
[PC] < 4 means “load number 4 into PC”

[M(4) <~ 100+[M(4)]

means “add #100 to contents of location 4 and save”

(This slide falls in the “good to know” category.)

 The complete list of instructions is known as the instruction set
Instructions are categorized according to basic operation

performed:

Data transfer
Arithmetic

Logic

Shifts & rotates
Bit manipulation
BCD

Program Control
System Control

ocw.utm.my

Instruction Set

©

UTM

I TEOLON N

ABCD
ADD
AND
ASL
ASR

Bcc

BCHG

BCLR
BRA

BSET
BSR
BTST
CHK
CLR
CMP
DBcc
DIVS
DIVU
EOR
EXG
EXT
JMP

JSR
LEA
LINK
LSL
LSR

ocw.utm.my

©UTM

I FIOLON A

Basic Instruction Set
| Mnemonic | Meaning | Mnemonic | Meaning |

Add decimal with extend
Add binary
Logical AND
Arithmetic shift left
Arithmetic shift right
Branch conditionally
Bit test and change
Bit test and clear
Branch always
Bit test and set
Branch to subroutine
Bit test
Check register with bounds
Clear operand
Compare
Decrement and branch conditionally
Exclusive OR
Unsigned divide
Jump to subroutine
Exchange registers
Sign extend
Jump to effective address
Logical shift left
Load effective address
Link stack
Signed divide
Logical shift right

MOVE
MULS
MULU
NBCD
NEG
NOP
NOT
OR
PEA
RESET
ROL
ROR
ROXL
ROXR
RTE
RTR
RTS
SBCD
Scc
STOP
SUB
SWAP

TAS
TRAP
TRAPV
TST
UNLK

Move source to destination
Sign multiply
Unsigned multiply
Negate decimal with extend
Negate
No operation
One's complement
Logical OR
Push effective address
Reset external devices
Rotate left
Rotate right
Rotate left through extend
Rotate right through extend
Return from exception
Return and restore
Return from subroutine
Subtract decimal with extend
Set conditionally
Stop processor
Subtract binary
Swap data register halves
Test and set operand
Trap
Trap on overflow
Test
Unlink stack

O Oood

ocw.utm.my

Instruction Format

e @Genericinstruction format

<label> opcode<.size> <operands>

<label>
opcode
<.size>

<operands>

pointer to the instruction’s memory location
operation code (MOVE, ADD, etc)
size/width of operand (B,W,L)

data used in the operation

for program documentation

Instruction

RTL

MOVE.W #100,DO0

[DO] < 100

MOVE.W $100,DO0

[DO] < [M($100)]

ADD.W D1,D0

[DO] < [DO] + [D1]

MOVE.W D1,100 [M(100)] < DO
DATA DC.B 20 [DATA] < 20
BRA LABEL [PC] < label

©

UIM

ey OO L

ocw.utm.my @ UTM

T TENON AT

Operands

* Operands can be
— Registers
— Constants
— Memory addresses

* Operands specify addressing modes such as

— Dn: data register direct MOVE.W DO, D1

— An: address register indirect MOVE.W (AQ),D1
— #n:immediate MOVE.W #10,D1

— N: absolute MOVE.w $1000,D1

* QOperands can be specified in several formats
— Decimal: default
— Hexadecimal: prefixed by S
— Octal: prefixed by @
— Binary: prefixed by %
— ASCII: within single quotes ‘ABC’

ocw.utm.my ®©UTM

Addressing Modes

Addressing mode : the mechanism used to compute the operand address
68000 has sophisticated addressing modes

Simplifies assembler programming because it reduces the number steps required to
specify an address

68000 has 14 addressing modes but really falls into 6 major categories.

Register direct
Immediate

Absolute

Program counter relative

Register indirect
Inherent

Effective address : the actual address used by the instruction

Examples:

e Data register D1 in the processor
* Address $10000 in memory

2-21

ocw.utm.my ©UIM

ey oL

A simple instruction

Format:

CLR.S <ea>
Example:

CLR.W D1 Clears lower word of D1
Effect:

D1 | FE | ED BE. .D1 FE | ED| 00 | 00

ocw.utm.my ©UIM

Another simple instruction

Format:
MOVE. s <ea>,<ea>
Example :
MOVE . W DO,D1 ;Copy lower word of DO to D1

Effect:

DO[12 34 [56 | 78 DO| 12 | 34 | 56 | 78

< berubah

D178 [56 | 3¢ | 12 D1/ 78 | 56 | 56 | 78

ocw.utm.my UTM

I TEOLON AT

Register Direct Addressing

Effective address : one of the 8 data register (D0O-D7)
The simplest addressing mode

Source or destination of an operand is a data register or an address
register.
— The contents of the specified source register provide the source operand.
— Similarly, if a register is a destination operand, it is loaded with the value
specified by the instruction.

Examples:

MOVE.B DO,D3 Copy the source operand in register DO to register D3
SUB.L AO,D3 Subtract the source operand in register A0 from register D3
CMP.W D2,D0 Compare the source operand in register D2 with register DO
ADD D3,D4 Add the source operand in register D3 to register D4

ocw.utm.my QZELIILQ

Register Direct Addressing

The instruction
indicates the data
| register

MOVE.B(DOJD1

The source
operand

is data register
»‘ 25 ‘ DO DO

‘ ‘Dl

The MOVE.B DO0,D1 instruction uses data registers for both source and
destination operands

ocw.utm.my @ QTM

Register Direct Addressing

MOVE.B DO,D1 The effect of this instruction is
to copy the contents of data register
DO in to data register D1

L

55 ‘Dl

* Short instructions (need only 3 bits to specify one of 8 data registers)
* Fast because the external memory does not have to be accessed.

ocw.utm.my @ UTM

I TEOLON N

Immediate Addressing Mode

* Effective address : the memory address immediately following the instruction
word

* Indicated by a # symbol in front of the source operand.
* (Can be used only to specify a source operand.

* The actual operand forms part of the instruction.
 Animmediate operand is also called a literal operand.

 Canonly be used as a source addressing mode. The destination of the data must
also be specified by the destination addressing mode.

TIP:
Very useful to load constants (values that never change).

ocw.utm.my @ QTM

Immediate Addressing Mode

 Theinstruction MOVE.B #4,D0 uses a literal source operand and a register
direct destination operand

___——The literal source operand,
4, is part of the instruction

—
MOVE.B #4,DO

The destination
operand is
a data register

I 4 DO

The effect of this instruction is to copy the literal value 4 to data register
DO

ocw.utm.my @ UTM

Absolute Addressing Mode

» Effective address : the memory location specified by the instruction

* In or addressing, the instruction provides the address of the operand in
memory.

e Direct addressing requires two memory accesses. The first is to access the instruction and
the second is to access the actual operand.

TIP:

Most addresses are specified in hex so the ‘S’ hex symbol is commonly found when
memory accesses are involved

« Example:

CLR.W $2000 clears word located at address 2000 hex.

ocw.utm.my @ QTM

Absolute Addressing Mode

M em ory

MOVE.B 20,DO0

20 42
| |

The effect of MOVE.B 20,D0
is to read the contents of memory
location 20 and copy them to DO

42 DO

ocw.utm.my ®©UIM

Bytes, Words, and Longwords

MOVE.B $1234,D3 MOVE.W $1234,D3 MOVE.L $1234,D3

[D3(0:7)] < [M($1234)] [D3(0:15)] < [M($1234)] [D3] < [M($1234)]

ocw.utm.my @ UTM

DRI TELON A

Address Register Indirect Addressing

Effective address : the memory address specified by the address
register contained in the instruction

The instruction specifies one of the 68000 s address registers; for
example, MOVE.B (A0),DO.

The specified address register contains the address of the operand.

The processor then accesses the operand pointed at by the address
register.

Example:

CLR.W (AO0) clears located in memory, specified by AO.

ocw.utm.my @ UTM

Register Indirect Addressing (ARI)
Mode

 This instruction means load DO with the contents of the location
pointed at by address register AO

Memory

A0 MOVE.B (AQ0),DO

1000 /
10;;1—> 57 DO

The instruction specifies the
source operand as (AO).

ocw.utm.my ®©UIM

Relative Addressing Mode

* Effective address : calculated by adding a displacement to the PC
* Format : XXXX or XXXX(PC)

 Contoh:
BRA *42

The “branch always” instruction transfers control to an instruction 2 bytes
h d Th “*” h 13 o, . ”
ahead. The character means “current position”.

ocw.utm.my @ HTM

Inherent Addressing Mode

Effective address : in processor register (CCR, SR, SP, USP, SSP or
PC) or memory but not indicated in the instruction

Format : usually no operand

Example:

* RTS

Takes 4 bytes from the “top of stack” and loads it into the PC. Involves PC, SP
and memory.

ocw.utm.my @ UTM

I FIOLON A

Machine instruction

e Each instruction is at least 1 word, at most 5 words.

* The first word is known as the operation word, which determines:
— Operation required
— Data size: byte, word or longword
— Length of the complete instruction
— Where to find data (effective address)

 The method of instruction encoding (how a instruction is written in

binary) is complex!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Operation Word (First Word specifies Operation and Modes)

Immediate Operand (If Any, One or Two Words)

Source Effective Address Extension (If Any, One or Two Words)

Destination Effective Address Extension (If Any, One or Two Words)

Variable Length Instructions

ocw.utm.my

@®UTM

I TELON AT

* Not only is the 68000 instruction format complex, the number of
bytes in an instruction also varies.

Address

$4000
$4002
$4004
$4006
$4008
$400A
$400C
$400E
$4010
$4012
$4014
$4016

Op-word

operands

$33FC

MOVE.W #1234,$543210

$1234

$0054

$3210

$D082

ADD.L D2,DO0

$0003

ORI.B #5,D3

$0005

$4EF9

JMP ($300008)

$0030

$0008

e

$4E70

RESET

OP-word Operand1 Operand2
v / 7\
33FC 1234 0054 3210
D082
0003 0005
4EF9 0030 0008
4E70

ocw.utm.my

©UTM

I FIOLON A

Addressing Mode Encoding

* Addressing mode is encoded using 6 bits within an instruction.

* For asingle-effective address instruction, the addressing mode is located in bits

0-5.

Kata operasi

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0

Mod

Daftar

N

~

vy 000

A

Daftar data langsung
Daftar alamat langsung
Daftar alamat tak langsung (ARI)
ARI dgn pascatokok

ARI dgn ofset dan indeks

PC relatif dgn ofset dan indeks

Mod Daftar _Mod alamat _
000 rer

001 rer

010 rer

011 rer

100 rer ARI dgn prasusut
101 rer ARI dgn ofset
110 rer

111 000 Mutlak pendek
111 001 Mutlak panjang
111 010 PC relatif dgn ofset
111 011

111 100 Terdekat

Sintaksis

Dn

An

(An)
(An)+
-(An)
N(AnN)
N(An,Xm)
SXXXX
FXXXXXXXX
N(PC)
N(PC,Xm)
H#EXXXX

ocw.utm.my

©

UTM

I FIOLON A

Machine Format for MOVE Instruction

The MOVE instruction is most heavily used.
— Generally, the most commonly used 68000 instructions are encoded in fewer bits.
— MOVE is encoded by only two bits (bit 15:14 = 00)

The effective address encoding is slightly different for the destination operand
The 68000 is a prime example of the CISC (Complex Instruction Set Computer)
Example: Machine code for MOVE.W D7,D0

0011 0000 0000 0011

el

Machine
language

MOVE.W D7,DO

0011 000000

000111

¢ ¢

¢

[DO(0:15)] < [D7]

opkod kendaliana

kendalian

N\

RTL

I TELON AT

ocw.utm.my @ UTM

Opcodes

15 14 13 12 11

ofojojt1yt1jofjt1joftoftoy1 1111111010

Bit 15, 14,13, 12 Operation
0000
0001 MOVE Byte
0010 MOVE Long
0011 MOVE Word
0100 Miscellaneous
0101 ADDQ /SUBQ/ Scc/ DBcc
0110 Bcce
0111 MOVEQ
1000 OR/DIV/SBCD
1001 SUB / SUBX
1010 (Unassigned)
1011 CMP /EOR
1100 AND / MUL / ABCD / EXG
1101 ADD / ADDX
1110 Shift / Rotate
1111 (Unassiggned)

ocw.utm.my @ UTM

ey OO

Summary

Register direct addressing is used for variables that can be held in registers
Literal (immediate) addressing is used for constants that do not change
Direct (absolute) addressing is used for variables that reside in memory

The only difference between register direct addressing and direct addressing is
that the former uses registers to store operands and the latter uses memory

For Further Info:
— Motorola 68000 From Wikipedia, the free encyclopedia:
* http://en.wikipedia.org/wiki/68000
— CPU World - Motorola 68000 microprocessor family:
* http://www.cpu-world.com/CPUs/68000

— 68000 Programmer’ s Reference Manual
* http://www.freescale.com/files/archives/doc/ref manual/M68000PRM.pdf

