OPENCOURSEWARE

SEE 3223 Microprocessor Systems

3: Assembly Language

Muhammad Mun’im Ahmad Zabidi (munim@utm.my)

I
Innovative.Entrepreneurial.Global

ocw.utm.my @LJTM

Assembly Language Programming

e Aims of this Module:

— To introduce the usage of assembler and to begin
assembly language programming

* Contents:
— Types of Assemblers
— Assembly Process
— Assembly Instruction Format
— Basic Assembler Directives
— Using a Simulator to Run Assembler Programs

ocw.utm.my @ UTM

DY OO0 AT

Machine & Assembly Language

Machine language instruction:
— Binary number for processor consumption
— Extremely hard to read or write even for very simple programs

Assembly language instruction:
— Mnemonic (easy to remember code) representing machine language

Solution:
— Programmer uses assembly language
— Processor uses machine language
— Use assembler to translate from assembly to machine

Assembly language is a form of the native language of a computer in
which
— machine code instructions are represented by mnemonics
* e.g.,, MOVE, ADD, SUB
— addresses and constants are usually written in symbolic form
* e.g., NEXT, BACK_SP

ocw.utm.my '@QTM

Assemblers

Assembler — software that translates from assembly
language to machine language

Source program / source code — program written by humans,
as input to the assembler

Object program / object code — machine language program
generated by the assembler

Cross Assembler — assembler that generates machine code
for a different processor

— Example: ASM68K generates code for Motorola processor but runs on
PC with Intel processor

Integrated Development Environment (IDE) — all-in-one
package that contains editor, assembler and simulator

NI TN AR

ocw.utm.my @ UTM

Assembly Process

Edit

Aliran
Kerja

Aliran
Data

YES

Ralat
sintaks?

Laksana

Kod objek Fail senarai

Ralat
semantik?

Accept program

ocw.utm.my '@QIM

Files Created by Assembler

S Listing File
OUICE sy yitor === Assembler)
File Binary File

* Binary file or object file is recognized by machine.
* Listing file contains the information of program
assembling.

* If a program written in more than one files, LINKER is
needed to link the object files together before

execution.

ocw.utm.my

Source File Example

* PROGRAM TO ADD TEN WORDS

ULANG

* DATA

DATA
JUMLAH

ORG $1000

CLR.W DO * JUMLAH=0

MOVEQ #10,D1 : PEMBILANG=JUMLAH UNSUR
LEA DATA, A0 : PENUNJUK=UNSUR PERTAMA
ADD.W (AO0)+,DO

SUBQ #1,D1

BNE ULANG

MOVE .W DO, JUMLAH
MOVE.B #227,D7
TRAP #14

ARRAY STARTS HERE

ORG $1020
DC.W 13,17,14,68,-3,20,85,30,1,19
DS.W 1

END

ocw.utm.my ©UTM
Listing File Example

MC68000 Cross Assembler
Copyright (C) Sstephen Croll, 1991. Author: Stephen Croll
version 2.00 beta 1.02

1 * PROGRAM TO ADD TEN WORDS
00001000 2 ORG $1000
00001000 4240 3 CLR.W DO ; JUMLAH=0
00001002 720A 4 MOVEQ #10,D1 ; PEMBILANG=JUMLAH UNSUR
00001004 41F9 0000101cC 5 LEA TATA, A0) PENUNJUK=UNSUR PERTAMA
0000100A DO58 6 ULANG ADD.W (A0)+,D0
0000100C 5341 7 SUBQ #1,D1
0000100E 66FA 8 BNE ULANG
00001010 33c1 00001030 9 MOVE . W DO, JUMLAH
00001016 1E3C OOE3 10 MOVE.B #227,D7
0000101A 4E4E 11 TRAP #14
12 * DATA ARRAY STARTS HERE
00001020 13 ORG $1020
00001020 000D0011000E 14 TATA DC.W 13,17,14,68,-3,20,85,30,1,19
00001034 15 JUMLAH DS.W 1
00001036 16 END

No errors detected.

3-8

ocw.utm.my ©UTM

Listing File with Errors

MC68000 Cross Assembler
Copyright (C) Stephen Croll, 1991. Author: Stephen Croll
version 2.00 beta 1.02

1 * ATURCARA MENUNJUKKAN RALAT

2 *
00000400 3 ORG $400
Line 4: Error in expression: label 'DATB' not defined
00000400 4 MOVE DATB, D5
Line 5: I1legal operand(s)

5 ADD NEXT,D8
Line 6: Unknown opcode

6 MOV D5,HASIL
00000406 5345 7 SUBQ #1,D5
00000408 60FE 8 BRA *
00000500 9 ORG $500
00000500 1234 10 DATA DC $1234
00000502 ABCD 11 LAGI DC $ABCD
00000504 12 HASIL DS 1
00000506 13 END

3 error(s) detected.

3-9

ocw.utm.my '@QTM

Object File Example

Object file is also known as S-Record file because each line
(record) starts with the letter S.

Contains memory values in hex format.

Details of the S-Record format can be found at http://
www.cs.net/lucid/moto.htm

ocw.utm.my

How to Edit

Be a hacker!

— Go with MS-DOS and use EDIT command

— Faster if you can touch-type

— Command-line assembler also uses MS-DOS

Be a WIMP(windows icon mice pointer)
— Go with Windows default and use NotePad - not recommended
— Alternatively, get a programmer’ s editor like Emacs or SCiTE

Use an IDE

— Integrated Development Environment

— All-in-one software with editor, assembler and simulator
— Examples are IDE68k and EASy68k

ocw.utm.my '@QTM

How to Assemble

e Assemblers are included in IDE

* If you use the DOS window, you can use DOS
assemblers

— ASM68K & A68K are free DOS assemblers
— Good enough for us

* Paid products have some advantages
— Can optimize code
— Assemble faster
— Have “macro” features
— Support really large programs
— One example is XASM68K

ocw.utm.my '@UTM

How Assembler Works

The assembler is responsible for translating the assembly
language program into machine code

The translation process is essentially one of reading each
instruction and looking up its equivalent machine code value

LC: Assembler’s simulation of PC

— When an assembly program is assembled, LC is used to keep track of
the “memory location” at which an instruction would be should that
instruction be executed.

— So that machine code can be generated correctly from assembly code.

As labels or variable names are encountered, addresses must
be filled in, branch offsets calculated etc

Labels in assembly language can be used before they are
defined

ocw.utm.my @UTM

Two-Pass Assembler

When a forward reference is encountered, the assembler
does not know what value to replace it with

This is solved by reading the source code twice — the two-
pass assembler

Pass I:

— Search source program for symbol definitions and enter these into
symbol table.

Pass Il:

— Use symbol table constructed in Pass | and op-code table to generate
machine code equivalent to source

ocw.utm.my
Pass |
(START)
[LC] <0
Fetch Next Instruction
(PASS Il)

Add Label to Symbol
Table with [LC] as
its value

A 4

Increment [LC]
Accordingly

A

3-15

LC

10
11
12
13

ocw.utm.my

Symbol Table

Machine

code

00001000

00001000
00001004
00001008
0000100A
0000100E
00001012
00001016
0000101A

®©UIM

ORI TN A

(00000019)

00000004 M
00001008 N
2411

139A2000
06450019
67000008
90881004
60EC

0000101cC

|

4722700
\00001000 /

OPT
EQU
ORG
DS.w
DC.L
MOVE.L
MOVE.B
ADDI.W
BEQ
SUB.L
BRA
STOP
END

Assembly

code

CRE ‘\\\

25

$1000 Forward
2 reference
EXIT

(Al),D2
(A2)+,(Al,D2)
#A,D5

DONE

N, DO Forward
?g%;oo reference
$1000 /

Lines: 13, Errors: 0, warnings: O.

What we care

SYMBOL TABLE INFORMATION

in the symbol

table
Symbol-name Type Value

ﬂx EQU 00000019

DONE LABEL 0000101c
EXIT LABEL 00001008
M LABEL 00001000
N LABEL 0000100

Decl
2

12

6

4

5

Cross reference line numbers

8.
9.
5, 11.
© % NOT USED * *

10.

ocw.utm.my '@QTM

Pass Il
(START)

A 4

LC] < 0

<

A 4

Fetch Next Instruction

Y
END? (STOP)
N

Opcode Lookup

A 4

| Generate Machine Increment [LC]
Code Accordingly

A 4

Symbol Table Lookup

3-17

ocw.utm.my '@QTM

How to Run a Program

Use a simulator

— SIM68K and E68K: free, MS-DOS based

— Simulator in included in IDE68k and EASy68k
— Commercial products are also available

Download & run on a target board
— Our lab has the Flight 68K

Burn into EPROM & run on a real board
— Must build a board first

Use an emulator

— Expensive

ocw.utm.my ©UIM

Assembly Language Statement
 Generic instruction format

<label> opcode<.size> <operands>

0 <label> pointer to the instruction’s memory location
1 opcode operation code (MOVE, ADD, etc)

1 <.size> size of operand (B,W,L). If omitted, usually defaults to .W
1 <operands> data used in the operation

u for program documentation

Instruction RTL
MOVE.W #100,D0 | [DO] < 100

MOVE.w 100,D0 [DO] < [M(100)]
ADD.W D1,D0 [DO] < [DO] + [D1]
MOVE.W D1,100 [M(100)] < D1

* Examples:

DATA DC.B 20 [DATA] < 20

BRA LABEL [PC] < Tabel

ocw.utm.my @UTM

Label Field

Optional.

Required if the statement is referred by another instruction.
— Target of Bcc, BRA, JMP, JSR or BSR instructions

— Data structure

Basic rules:

— If used, label must start at column 1.

— 1st character must be a letter (A-Z, a-z).

— Subsequent characters must be letter or digit.
— If 1st character is ; or *, the whole line is a comment.

Labels must be unique.

The symbols AO-A7, DO-D7, CCR, SR, SP & USP are reserved for
identifying processor registers.

ocw.utm.my

Label Field

OUIM

* Valid symbolic name contains 8 letters or numbers.

e Name starts with letter.

* Only 8 letters are significant:
— TempVal23, TempVal27 are recognized as TempVal2 by assembler

* Use meaningful labels!

T IO A

valid Tabels

valid but meaningless

Invalid Tlabels

ALPHA CONFIUS 123
First ENCIK 1st
Second TOLONG 2nd
NUMBER3 LULUSKAN AK-47
MIX3TEN SAYA DIV/2

ocw.utm.my

Opcode Field

Two types of statements

Executable instructions
Assembler directives

Executable instructions

Must exist in instruction set

translated into executable machine code
tells the machine what to do at execution
e.g. MOVE, ADD, CLR

Assembler directives

Controls the assembly process

non-executable -> not translated into machine code
Varies by assembler

e.g., EQU, DC, DS, ORG, END

May have size specifier (Byte, Word or Longword)

©

UTM

I RO BT

I RO BT

ocw.utm.my @ UTM

Operands

 Operands can be
— Registers
— Constants
— Memory addresses (variables)

* Operands specify addressing modes such as
— Dn: data register direct MOVE.W DO, D1
— An: address register indirect MOVE.W (A0),D1
— #n:immediate MOVE.W #10,D1
— N: absolute MOVE.W $1000,D1

* Operands can be specified in several formats
— Decimal: default
— Hexadecimal: prefixed by $
— Octal: prefixed by @
— Binary: prefixed by %
— ASCII: within single quotes ‘ABC’

ocw.utm.my ©UIM

Operand Field

* Number of operands (0/1/2) depends on instruction

* For two-operand instruction, separate by a comma
— First operand = source

— = 1 1 MOVE i ivalent t
Second operand = destination 1oy emaere

applies to an instruction, the

d Exa m p | es. default data size is Word.

/

MOVE DO,D1 ;two-operand
CLR.W D2 ;one-operand

The RESET instruction is
one of several instructions
that do not have a size
specifier.

ocw.utm.my @ UTM

Operand Field

e Operand field can also contain expressions (“formulas”)

* Allowed expressions include
— Symbols
* Follows the rules for creating labels
— Constants
* Numbers or ASCII strings
— Algebraic operations

* +(add) - (subtract)

e *(multiply) / (divide)
* % (remainder) ~ (NOT)
* & (AND) | (OR)

A (XOR)

o << (shift left/multiply by 2) >> (shift right/ divide by 2)
— Location counter (* symbol)
* Keeps tracks of which line is being assembled

ocw.utm.my @UTM

e oo

Comment Field

Comments are important!
— Explains how program works
— Explains how to use the program
— Makes modifications easier in future

Comments are ignored by the assembler

Comment field starts with ; or *
Tips:
— Not easy to have “just the right amount” of comments

— Don’ t comment the obvious

— Aline begins with an “*” in its first column is a comment line
* - lineis ignored by the assembler

- oowutmmy ®UurM

Program Template

explain what the

program does ORG directive to

\ indicate start of
* ADDNUMS CODE section

* Program to add 4 numbers located at 4-word array
* Stores in word immediately after array

Code: assembly $1000
' #4,D0 Loop counter, 5 words to be added
language
instructions ol sum = 0
ARRAY,AQ A0 points to start of array
LOOP ADD.W (A0)+,D1 Add word to sum
DBRA DO, LOOP Repeat until all words are added
MOVE .W D1,RESULT Store 1in 1t
MOVE . B #9,D0 End program Instructions to stop
TRAP #15 program
* Data execution. May not
Data initialization $1100 be necessary if the
(DC) and data 5,10,15,20,25 program is to run
storage (DS) 1 continuously.
directives START

Another ORG to
indicate start of
DATA section

END instruction
with initial program

counter value

3-27

ocw.utm.my @ UTM

NI TN AR

Where to Put Your Program

Running a program in IDE68K Running a program in Flight 68K board
000000 000000 Vector table
Vector table 000400 | T
Rest of EPROM
Your
00000
5 Code Section program can 4 Reserved
’g) reside 400400 .
= anywhere Code Section Your program can
- . between only reside
9 | Data Section $400 and Data Section anywhere between
$DFFE. $400400 and
I/O Block
00E042 For system use.
A second Not for user
free area programs.
starts from FFF000
$E042. I/O Block Ambiguous areas -
— FEFFFE do not contain any
devices.
, Free area for
* IDE6G8K doesn' t have - programs,

ROM!

ocw.utm.my @QTM

ORG Directive

e Sets the address for following instruction or data

— Example:
ORG $400
MOVE DO, D1

e Puts the MOVE instruction at location S40.

* ORG actually reset the value of location counter (LC)
* LC: Assembler’s simulation of PC

ocw.utm.my @LJIM

END Directive

Tells the assembler to stop assembling
Usually the last statement in a file

If not the last statement, the following
statement will be ignored

Some assemblers don’ t need the instruction

Some assemblers make you supply the
starting address of the program

— Example: END $2000 means set the program
counter to $2000 when running this program

ocw.utm.my @ UTM

EQU Directive

 Equates a name to a value

e exl
SAIZ EQU 20
ORG $400
MOVE #SAIZ,D0

* MOVE #SAIZ,D0 has the same effect as MOVE #20,D0

e ex2
ROW EQU 5
COLUMN EQU ROW+1
SQUARE EQU ROW*COLUMN

* SQUARE will be replaced by 30 every time it is used.

ocw.utm.my ©UIM

DC Directive

ORG $2000
DC.W 3
Define Constant DC.B $23,49
Reserves memory location bc.L 10 ,
d initialize (put in initial DC.B Input:
and initialize (put in initia bc.w 1.2.9.16
value) TN
Can initialize many data in 002000 00 | 03 | pe.w 3
. 002002 23 31 DC.B $23,49
a time 002004 | 00 | 00
. . 002006 | 00 | oa }DC'L 0
The sizes will be 002008 | 45 | 6z
considered in B,W or .L ZZEZZC ;Z 15 }C Input:’
Take care: A 16-bit word 002002) 00 | 01
002010 00 02
ShOUId not be Stored 002012| 00 | 09 pC.W 1,4,9,16
002014 00 10

across the even boundary,
e.g. at $1001 T

ocw.utm.my @LJTM

DS Directive

Define Storage

Reserves (allocates) storage location in
memory

Similar to DC, but no values stored
— DC: set up values in memory locations

— DS: reserve memory space for variables

Useful to define storage array for calculation
results

All values in the array are set to zero (cleared)

ocw.utm.my @

The Location Counter

Location Counter (LC) can be accessed by the * symbol.

— In this example, you can change the string any time, and STRLEN will
automatically be updated.

Example 1:

— Here, * = 2004 because $2000 + 4 bytes of data = $2004.
When we save the value of * into MYSTERY, we will have MYSTERY =
§2004. We can use this to calculate length of the data array.

ORG $2000
DATA DC.B 1,2,3,4
MYSTERY EQU *

NI TN AR

ocw.utm.my @ UTM

The Location Counter

e Example 2:

— Here, LENGTH will get the value 4. So the MOVE instruction will put 4 into DO. What if
you add more items in the array?

ORG $1000
MOVE #LENGTH, DO
ORG $2000
DATA DC.B 1,2,3,4
LENGTH EQU *-DATA

e Example 3:

— Here, LENGTH will get the value 9. You don't have to count how many items in the array.
Did you notice number 7 is missing in the BYTE array?

ORG $1000
MOVE #LENGTH, DO
process the array in 9 loops
ORG $2000
DATA DC.B 1,2,3,4,5,6,8,9,10
LENGTH EQU *-DATA

ocw.utm.my

OUIM

T TIOLON ATA

the Location Counter

Example 4 (Wrong way):

— Here, LENGTH will get the value 18. IT'S NOT THE NUMBER OF ITEMS IN THE ARRAY, but
the number of bytes. Normally you want to know the number of items.

ORG

MOVE
process the
ORG
DC.W
EQU

DATA

LENGTH
Example 5 (Correct way):

— Here, LENGTH will get the correct value 9.

ORG

MOVE
process the
ORG
DC.W
EQU

DATA
LENGTH

$1000

#LENGTH, DO

array in 18 loops
$2000
1,2,3,4,5,6,8,9,10
*-DATA

$1000

#LENGTH, DO

array in 9 loops
$2000
1,2,3,4,5,6,8,9,10
(*-DATA) /2

9 ue‘i.j

abll
‘g%&d\

- oowutmmy ®UurM

] EASy68K Editor/Assembler v3.1 April 19, 2005 }J

Ele Edt Project Options Window Help

Dedé& A &« D

* Program Number:

* Writcten by

* Date Created

* Description

T

Vo enan oo o o0 5 50 55 5500 S5 S5 5 5505 S5 G5 5P S50 S5 SR S5 5 S S5 S5 S5 S5 S5 S5 S5 4 S5 S G S 5545 S S S5 59 S5 S5 S5 S S5 45 G5 45 S5 4505 Snan
START ORG $§1000

MOVE.B #9,D0

TRAP #i1s Halt Simulator
END START
In1 col1 | fInsert |

3-37

- oowutmmy ®UurM

K EASy6BK Editor/Assembler v3.1 April 19, 2005 B "lm-!l
Be [at Project Optiors Window teb

Ded& M P00

- -

Program Number:l

Vritten by iAlan Clements

Date Created :13 October 2008

Descriprion iIntroduction to the 68K assembler

List, A0 ;A0 i3 =et tO point at the lisc

45,00 sUse DD a® a loop counter - =et it to 5 fir S numbers

D1 ;Clear the total in D1 before we start

(A0),D1 sAdd the number pointed at by AO to D1

#1,A0 ;Point to the next number in the list by incrementing AO (the pointer)
i, 00 ;Decrenent the counter

Loop 12 we haven't reached zero, ¢o round again

9,00 :This 13 the code for 'halc!’
#is ulator (the TRAP calls the O/3)

§2000 ;Puc the data he
1,4,3,6,7 :Mere'= the data to add.
STARY

Instruction to stop
program
execution. May not
be necessary if the
program is to run
continuously.

3-38

- oowutmmy ®UurM

* Program Number:1
* Vricten by :Alan Clements
Pate Created :13 October 2005

=10}

Deacriprtion :Introduction to the 68K assemdler

Click on Project
___ Menu to get
Assemble Source
option.

LEA List, A0 A0 13 set to point at the list
MOVE.B #5,D0 ;Use DO a3 & loop counter - zet it to S fir S numbers
CLR.B D1 :Clear the total in D1 before wve start
Loop ADD.B (AD),D1 :Add the number pointed at by A0 to D1
ADD.L Wi,A0 ;Point to the next nwmber in the list by incrementing A0 (the pointer)
SUB.B ¥1,D0 ;Decrement the counter
ENE Loop ;12 we haven't reached zero, go round again
HOWE.B 5,00 :;This is the code for ‘halt’
TRAP #15 :Halt Simulator (the TRAP calls the O/5)
ORG $2000 :Put the data here
Lisc DC.B 1,49,3,6,7 :Here's the data to add.
END START ~|
h2on | L S

3-39

- oowutmmy ©UIM
EASy68K: Successful Assembly

_ TeitiN
| .v‘ .u. e A1 _1.- __-_ > ‘.

"m.ln!

T RA s e

Wit b Sinh Cimmenie

4 Buta Crmsad (M) Omteser MONA

ol AT R IRt 1ah Lo L 0L sinees L0
.

Tt L 2 (X

(A) (R) sl e s e e e

AR E w Sen B0 ar u vy snemes LA R P N
ey n climee the vl a M e = iy

LT TN L UL D TR I D L)

“weo "n.e PRt n Ahe sanh malan 8 Ahe 00 br aantesmad L A0 ihe peimier)
maes Hw levymamet t 0 cowntaw

e [L S L e

EAR.E W FONE e e deie T T ain

e " P Nhesimton e TRAR saiis e

o oo VIR B A s

L LA Beaw's she Aata tn wl.

(=3 "

Click on Execute
to run your
program.

-] =

L R Bt BN RTF TN I i it | i [4t e | b e | B0 ABSOMA e e

3-40

ocw.utm.my

sing EASYy68K

|22 FASYE IR Hardwarl S LHO00 Mermen M=
Mhicess - ¢ o Copy| Fill| Save
Addrqloo'ml“o 00 01 02 (.‘!3 04 05 06 07 08 99 0A 0B OC OD OE OF 0123456789ABCDEF
|uuzuc000013k01 00 DO 00 &5 00 00 .
Input/output 000013801 0L F4 02 4C 02 9D Simulated
. AddrqOOOOl'sl.'Ol 03 D2 03 E3 03 E8 .
devices i i i 0020000013001 74 63 63 6B 2E 77 FGQISterS
. - . NAANLGENL e AN EF EF EF CF -
«\\\\\::::::::§§\ ' - - -] - . St G A ARy sheck W hSound. Sol Ell;]ﬁi
e B w28 ¢ &
7o Skl
.—I .J .J J .—.I .—-I Bo={ooooooos B4={oooooozo AS={ooooisase Ad={oooooooo TS INT XENVC Cyclex
Inteerept P1=0o1pacos P3={oooooiqs Al={ooooisce A%={oooooooo §}|a010000000000000 ks
7 6 65 4 ®2={oooooops Bé=~{oooooot? AZ={oooooooo A€~{oooooooo wS={oorroooo Do Cpdax
-.l.]..l.]m P3~{oooooont ®7={oooooosx A3=oooooooo A7={oioooooo SY={oioooooo $E-{ooooioxa
NN NN NN HlCess ===l RO —— e L e > H H
janas aaacess o i ouLce > First line of code
0000L0DE 0481 0041EBOD 144 sup, L SNCON, dL Cive —
000010E4 145
000010E4 * Caleulore vovol w winures this

000010E4

000010E8
000010EE
000010F2
000010F4
000010Fs
000010F8
000010FE
00001100
00001104
00001106
00001108

L 900000000000

0281
82FC
ZE0L
7010
EOAF
0281
AL
82FC
2001
7010
EOAE

0000FFEF
003¢

0000FFFF

003¢

155
156
157
158
159

vy Start

H63 file rond sovcesstal
hreat point av 1024

;'l‘gl’;'l DOYYYYco: ¥r ¥y ry ry
vouve, 1 foorrrrca: yrovr vy vy A’
Vel dooryrrca: vy vy vy vy
wavedl Yoorerrce: yr ovr vy vy v’
L9l Aoovyrron: vy vy vy vy
ondlel Yonvwryna: vy vy vy vy
;‘ij;l DOYYYYOE: YY YY YY ¥YY Weew
voue, 1 fporrrrvc: yrowr vy vy BT
Vel ooryrrvo: vy vy vy vy
’l':f"ll DOYYYYYQ: YY Yy Yy vy ’
8 DoYYYYYRS: ¥y yr yr vy
DOYYYYEC: ¥YY oYY ¥y vy L
DoYryrro: 00 00 00 3Xx 7
DOYYYYYQ: 00 00 00 BX
porrrrrs: 00 00 OO DS
DOYYYYYC: 00 00 13 AA -
)
RIS

