 cowutmmy
SEE 3243/4243

Digital System

Lecturers :
Muhammad Mun'im Ahmad Zabidi
Muhammad Nadzir Marsono

Kamal Khall Week 5: Arithmetic Circuits Part 1

MBinary Number Representation
Sign & Magnitude
Ones Complement
Twos Complement
B Networks for Binary Addition
Half Adder
Full Adder
Ripple Adder
Subtractor

ocw.utm.my

Motivation

e Arithmetic circuits are excellent examples of
comb. logic design
 Time vs. Space Trade-offs

— Doing things fast requires more logic and thus more
space

— Example: carry lookahead logic
e Arithmetic Logic Units
— Critical component of processor datapath

ocw.utm.my

Unsigned Integers
 Smallest representable value: bit

e Bit groups represent information

e Number of bits determine max. combinations of
information

° N b|ts — 2N Number Number [V

of Bits of values

ocw.utm.my

Unsigned Integers
Value for the bit pattern:

N-1
Vunsigned = Zbl X 2I
0
Example: |

10110,=1x24+0x23+1x22+1x2'+0x2°
=22,

How many numbers can 8-bit represent?

For N bits, range of values:
OQupto2N-1

ocw.utm.my

Representation of Negative Numbers

e Representation of positive numbers same in most systems
 Major differences are in how negative numbers are represented
e Three major schemes:

— sign and magnitude

— ones complement

— twos complement
* Assumptions:

— 4-bit machine word

— 16 different values can be represented

— roughly half are positive, half are negative

ocw.utm.my

Sign and Magnitude
Easiest to understand
Leftmost bit (MSB) is sign bit
— 0 means positive
— 1 means negative
+18 = 00010010
-18 =10010010
All digit strings with leftmost digit = 0 are positive numbers
Positive numbers are represented like natural binary numbers

For a negative number, the magnitude of that number is equal to
whatever you get by interpreting all the bits other than the sign bit
in the natural way

ocw.utm.my

Sign and Magnitude

+
0100=+4
1100=-4

_

Example for N=4:

High order bit is sign: 0 = positive (or zero), 1 = negative
Three low order bits is the magnitude: 0 (000) thru 7 (111)
Number range for n bits = +/-(2"1-1)

Two representations for 0 (0000 and 1000)

ocw.utm.my

Sign-and-Magnitude Problems

Easy for humans to understand, but may not be
the best for machine operation efficiency

Cumbersome addition/subtraction

Must compare magnitudes to determine sign of
result

Need to check both sigh and magnitude in
arithmetic

Two representations of zero (+0 and -0)

ocw.utm.my

Ones’ Complement Representation
Ones’ complement defined as

N=(2"-1)-N
In ones’ complement we get the negation of a
number by flipping all the bits

The name ones’ complement comes from the fact
that we could also get the negation of a number
by subtracting each bit from 1

Complement of a complement generates original
number

ocw.utm.my

Ones’ Complement Representation

* Ones’ complement of +7 N=(2"-1)-N
— Sincen=4, (2"-1)=1111

2n -1
N (+7)
N (-7)
e Ones’ complement of -7
2n -1
N (-7)
simply compute bitwise complement N (+7)

1001 -> 0110

5-10

ocw.utm.my

Ones’ Compleomergt Representation

-2 +2 +
-3 o11\+3 0100 = + 4
N=(2"-1)-N _4 \1011 0100 [+4 1£11 =-4

1000 0111

Some complexities in addition
Subtraction implemented by addition & 1's complement
Still two representations of 0! This causes some problems

ocw.utm.my

Two’s Complement
* Two’s complement defined as

N*=2"—NforNZ0
OforN=0

e Exception is so result will always have n bits

e Two’s complementis justa 1l addedto1’s
complement

e Complement of a complement generates original
number

ocw.utm.my

Twos Complement Representation
-1 +0

-3 +2 +
like 1's comp /
except shifted -4 0011\ 3 0100 = + 4
one position
clockwise -5 |1011 0100 | +4 1100=-4

1000 0111

Only one representation for O
One more negative number than positive number

ocw.utm.my

Two’s Complement Representation

N*=2n-N
* Two’s complement of +7 on
N (+7)
N* (-7)
e Two’s complement of -7 on
N (-7)
Shortcut method: N* (+7)

Twos complement = bitwise complement + 1
0111 -> 1000 + 1 -> 1001 (representation of -7)
1001 -> 0110 + 1 -> 0111 (representation of 7)

5-14

- oowutmmy
Finding 2’s Complement

Complement
remaining bits l l Copy all bits

to first 1
B CrOREOD

2's complement T— Start here

ocw.utm.my

Table 2-6 Decimal and 4-bit numbers.

Two’s Ones’ Signed
Decimal Compliement Complement Magnitude
-8 1000 — —
—7 1001 1000 1111
—6 1010 1001 1110
-5 1011 1010 1101
—4 1100 1011 - 1100
-3 1101 1100 1011
—2 1110 1101 1010
-1 1111 1110 1001
0 0000 1111 or 0000 1000 or 0000
1 0001 0001 0001
2 0010 0010 0010
3 0011 0011 0011
4 0100 0100 0100
5 0101 0101 0101
6 0110 0110 0110
7 0111 0111 0111

ocw.utm.my

Range of Numbers

4-bit 2s complement
0 +7 =0111 = 23-1
0 -8 =1000 = -23
8 bit 2s complement
0 +127 = 01111111 =27 -1
0 -128 = 10000000 = -27
16 bit 2s complement

0 +32767 = 011111111 11111111 =2+ -1
0 -32768 = 100000000 00000000 = -2*°

N bit 2s complement
0 011111111..11111111 =21 -1 (largest positive)
1 100000000..00000000 = -2N-1 (largest negative)

ocw.utm.my

Conversion Between Lengths, e.g. 8 2 16
e Positive number: add leading zeros
—+18 = 00010010
—+18 = 00000000 00010010

 Negative numbers: add leading ones
—-18 = 11101110
—-18=11111111 11101110

e j.e. pack with msb (sign bit)

called “sign
extension”

5-18

ocw.utm.my

Addition and Subtraction

a—b =7
Normal binary addition
Monitor sign bit of result for overflow

Take negation of b and add to a
—ji.e.a—b=a+(-b)

So we only need addition and complement circuits

ocw.utm.my

Addition and Subtraction : Ones Complement

4 0100 -4 1011
+3 0011 + (-3) 1100
7 0111 -/ 10111

End around carry |—>1

1000
4 0100 -4 1011
-3 1100 + 3 0011
1 10000 -1 1110

End around carry |—>]

0001

ocw.utm.my

Addition and Subtraction : Twos Comp

4 0100 -4 1100
+ 3 0011 + (-3 1101
! 0111 -7 11| 001 carry-in to sign =
carry-out then
ignore carry
4 0100 -4 1100
-3 1101 + 3 0011
1]10001 -1 1111

If carry-in to sign =
carry-out then
ignore carry

e Simpler addition scheme makes twos complement the most common choice for integer
number systems within digital systems

ocw.utm.my

Addition and Subtraction : Twos Comp

e Why can the carry-out be ignored?

e Add 2’s complement of N to M
—ThisisM-N=M + N*

e |[f M =N, will generate carry
—M+N*=M+(2"-=N)=M-N+ 2"
— Discard carry: just like subtracting 2
— Result is positive M - N

e [fM<N, no carry

ocw.utm.my

Overflow Conditions

 Add two positive numbers to get a negative number
or two negative numbers to get a positive number

ocw.utm.my

Twos Complement Overflow

Expected Actual Expected Actual
-7
-2
-9 +7

Overflow Overflow
Expected Actual Expected Actual
-3
-5
-8 +8
No Overflow No Overflow

Overflow when carry in to sign does not equal carry out
5-24

ocw.utm.my

Iterative Circuit

e Like a hierarchy, except functional blocks per bit
An—an—l Al Bl A{I B{n

X1 X X,

—_— e = et —_——
2= Cennt [TV, e o0 “~, Cell 1 Y, Cello [€7 N0
Y, ——» — - — ——» Y,

C. C, C,

Adders are a great example of this type of design
Design 1-bit circuit, then expand

Look at

00 Half adder — 2-bit adder, no carry in
Inputs are bits to be added
Outputs: result and possible carry

O Full adder — includes carry in, really a 3-bit adder

ocw.utm.my

Half Adder

Simplest adder block is “half adder”
— Not very useful by itself

X X
X Y C S
arry Sum v 0 1 v 0 1
0 0 0 0 o|lo0 | o o|lo |1
0O 1 0 1
1 O 0 1
1 1 1 0 1 0 1 11 1 0
Carry =AB SuUm=AB+AP

=AlB

o\
j ! /D— >

Half-adder Schematic

ocw.utm.my

Full Adders
e Basic building block is full adder

e Many full-adders are combined to add more than
1 bits

e Truth table:

X
<
@)

Cout
0

w

5

R IFPF(IPIPO OO0
R[OOI, |O|O
R O(kP|O|[FkP|O|FL,|O
RlRr|R|O|R|O|O

R OOk |O|F, |, |O

ocw.utm.my

Full Adder

XY XY
Ci_ 00 01 11 10 Ci_ 00 01 11 10
°lol1]o0]1 °lolo]1]o0
"lT1]10l12|o0 "lTol1]1l1
s=x0OvOc, Cout =XY +XCp, +YC,

=XY+(X+Y)C,

In a multi-stage adder:
0 Variable i indicates stage number.
0 C,, Is carry to i-th stage, also known as C,
0 C,, IS carry to next stage, also known as C,,;

ocw.utm.my

Full-adder circuit: Straightforward Approach

) O

Cost: 6 Gates,
13 inputs

X » : N
v]
CIN
—

[

B

—

full adder }
— X

1y S
—1 CIN COUT

.

bt Y

-— COUT CIN fm—

i

ocw.utm.my

Full Adder: Alternative Implementation

Cost: 6 Gates, max. 2 inputs per gate, 3 levels of logic
Advantage: All gates of 2-input type, easier to do VLSI layout

) D C

Coui=XY+YC +XC,
=XY+(X+Y)C,

ocw.utm.my

Implementation with Two Half Adders (and an OR)

Cost: 5 Gates, 3 levels of logic

| Half adder | | Half adder :

! T (XOY' |

: 7 7 : i ! S
| |

| |

| XY - Z(xoY)

! | e |

! | | |

L T C

Fig. 3-27 Logic Diagram of Full Adder

5-31

ocw.utm.my

Ripple-Carry Adder

X3 Y3 Xo Yo X Y1 Xp Yo
b v ‘o t
X Y X Y X Y X Y
c, -—— COUT CIN -ca— courT CIN -CE— coutrT CIN -C1— COUT CIN fe— c,
S S S S
' ' ' '
Sq S, S Sq

Straightforward — connect full adders
Carry-out to carry-in chain
— G, in case this is part of larger chain, maybe just set to zero
Speed limited by carry chain
Faster adders eliminate or limit carry chain
— 2-level AND-OR logic ==> 2" product terms
— 3 or 4 levels of logic, carry lookahead

ocw.utm.my

Overflow Detection

X3 Y3 Xo Yo X Y1 Xp Yo
vy vy Yy 'y
X Y X Y X Y X Y

Cq

¢ 1 COUT CIN T COUT CIN fpe—— COUT CIN fa—— COUT CIN f=— c,

S S S S
i ' ' '
N 83 S 51 So

Overflow

If Overflow = 1, then overflow condition occurs. The output should not be
used, i.e. the output is wrong.

Condition is that either C, or C, is high, but not both (n = #stages)

~ ocwutmmy
Half Subtractor Circuit

Difference

D=XY+XY'=XDOY § f
Borrow
B=XY B

5-34

. oowutmmy
Full Subtractor Circuit

XY B, B D

-

X Y

BOUT BIN
D

Difference
D=XDOYUOB,

Borrow out
B.it = XY + X'B,, + YB,

out

ocw.utm.my

Multi-Stage Full Subtractor

X3 Y3
X Y
out

o
s — X
x o

<|— <
o
e

ocw.utm.my

Subtraction Using Adders

Subtraction is the same as addition of the two’s complement.
The two’s complement is the bit-by-bit complement plus 1.

Therefore, X - Y=X+Y +1.
0 Complement Y inputs to adder, set C, to 1.

)[3 Y3)[2 Y2)J(l Yy }(o
A B A B A B A

—|CO + (I CO + Cl——|CO + Clf&——|CO + Clp—1
S | S S S

1 |

Sy S, Sy So

Overflow Less gates compared to purpose-built subtractor!

ocw.utm.my

Adder/Subtractor

A3 B|3|§3 A2 I?2§|2 A1 B|1 Ell Ao Eio?)

l 0 1]Sel ‘O 1]1Se ‘O 1]Sel 0 1|Sel
4:-_ 3 U]

A B A B A B A B

—I|CO + (I CO + Clf&—0O + Cl—O + C|f—e®—Add/Subtract
‘ S S S

S3 Sz Sy So

Use 2:1 multiplexers to choose
Overflow uncomplemented or
complemented inputs

Remember,A-B=A+ (-B) =A+ B+1
So when Add/Sub=0,S=A+B
When Add/Sub=1,S=A+B+1=A-B

ocw.utm.my

Alternative Design

¥ ¥ ¥

FA f—21 FA fe—21 FA

-

Ca

l l i

SB 82 SI
Fig. 3-31 Adder-Subtractor Circuit

Output is 2’s complement if B > A

5-39

