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Motivation

e Arithmetic circuits are excellent examples of
comb. logic design
 Time vs. Space Trade-offs

— Doing things fast requires more logic and thus more
space

— Example: carry lookahead logic
e Arithmetic Logic Units
— Critical component of processor datapath
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Unsigned Integers
 Smallest representable value: bit

e Bit groups represent information

e Number of bits determine max. combinations of
information

° N b|ts — 2N Number  Number [V

of Bits of values
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Unsigned Integers
Value for the bit pattern:

N-1
Vunsigned = Zbl X 2I
0
Example: |

10110,=1x24+0x23+1x22+1x2'+0x2°
=22,

How many numbers can 8-bit represent?

For N bits, range of values:
OQupto2N-1
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Representation of Negative Numbers

e Representation of positive numbers same in most systems
 Major differences are in how negative numbers are represented
e Three major schemes:

— sign and magnitude

— ones complement

— twos complement
* Assumptions:

— 4-bit machine word

— 16 different values can be represented

— roughly half are positive, half are negative
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Sign and Magnitude
Easiest to understand
Leftmost bit (MSB) is sign bit
— 0 means positive
— 1 means negative
+18 = 00010010
-18 =10010010
All digit strings with leftmost digit = 0 are positive numbers
Positive numbers are represented like natural binary numbers

For a negative number, the magnitude of that number is equal to
whatever you get by interpreting all the bits other than the sign bit
in the natural way
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Sign and Magnitude

+
0100=+4
1100=-4

\_

Example for N=4:

High order bit is sign: 0 = positive (or zero), 1 = negative
Three low order bits is the magnitude: 0 (000) thru 7 (111)
Number range for n bits = +/-(2"1-1)

Two representations for 0 (0000 and 1000)
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Sign-and-Magnitude Problems

Easy for humans to understand, but may not be
the best for machine operation efficiency

Cumbersome addition/subtraction

Must compare magnitudes to determine sign of
result

Need to check both sigh and magnitude in
arithmetic

Two representations of zero (+0 and -0)
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Ones’ Complement Representation
Ones’ complement defined as

N=(2"-1)-N
In ones’ complement we get the negation of a
number by flipping all the bits

The name ones’ complement comes from the fact
that we could also get the negation of a number
by subtracting each bit from 1

Complement of a complement generates original
number
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Ones’ Complement Representation

* Ones’ complement of +7 N=(2"-1)-N
— Sincen=4, (2"-1)=1111

2n -1
N (+7)
N (-7)
e Ones’ complement of -7
2n -1
N (-7)
simply compute bitwise complement N (+7)

1001 -> 0110

5-10
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Ones’ Compleomergt Representation

-2 +2 +
-3 o11\+3 0100 = + 4
N=(2"-1)-N _4 \1011 0100 [ +4 1£11 =-4

1000 0111

Some complexities in addition
Subtraction implemented by addition & 1's complement
Still two representations of 0! This causes some problems
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Two’s Complement
* Two’s complement defined as

N*=2"—NforNZ0
OforN=0

e Exception is so result will always have n bits

e Two’s complementis justa 1l addedto1’s
complement

e Complement of a complement generates original
number
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Twos Complement Representation
-1 +0

-3 +2 +
like 1's comp /
except shifted -4 0011\ 3 0100 = + 4
one position
clockwise -5 |1011 0100 | +4 1100=-4

1000 0111

Only one representation for O
One more negative number than positive number
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Two’s Complement Representation

N*=2n-N
* Two’s complement of +7 on
N (+7)
N* (-7)
e Two’s complement of -7 on
N (-7)
Shortcut method: N* (+7)

Twos complement = bitwise complement + 1
0111 -> 1000 + 1 -> 1001 (representation of -7)
1001 -> 0110 + 1 -> 0111 (representation of 7)

5-14
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Finding 2’s Complement

Complement
remaining bits l l Copy all bits

to first 1
B CrOREOD

2's complement T— Start here
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Table 2-6 Decimal and 4-bit numbers.

Two’s Ones’ Signed
Decimal Compliement Complement Magnitude
-8 1000 — —
—7 1001 1000 1111
—6 1010 1001 1110
-5 1011 1010 1101
—4 1100 1011 - 1100
-3 1101 1100 1011
—2 1110 1101 1010
-1 1111 1110 1001
0 0000 1111 or 0000 1000 or 0000
1 0001 0001 0001
2 0010 0010 0010
3 0011 0011 0011
4 0100 0100 0100
5 0101 0101 0101
6 0110 0110 0110
7 0111 0111 0111
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Range of Numbers

4-bit 2s complement
0 +7 =0111 = 23-1
0 -8 =1000 = -23
8 bit 2s complement
0 +127 = 01111111 =27 -1
0 -128 = 10000000 = -27
16 bit 2s complement

0 +32767 = 011111111 11111111 =2+ -1
0 -32768 = 100000000 00000000 = -2*°

N bit 2s complement
0 011111111..11111111 =21 -1 (largest positive)
1 100000000..00000000 = -2N-1 (largest negative)
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Conversion Between Lengths, e.g. 8 2 16
e Positive number: add leading zeros
—+18 = 00010010
—+18 = 00000000 00010010

 Negative numbers: add leading ones
—-18 = 11101110
—-18=11111111 11101110

e j.e. pack with msb (sign bit)

called “sign
extension”

5-18
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Addition and Subtraction

a—b =7
Normal binary addition
Monitor sign bit of result for overflow

Take negation of b and add to a
—ji.e.a—b=a+(-b)

So we only need addition and complement circuits
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Addition and Subtraction : Ones Complement

4 0100 -4 1011
+3 0011 + (-3) 1100
7 0111 -/ 10111

End around carry |—>1

1000
4 0100 -4 1011
-3 1100 + 3 0011
1 10000 -1 1110

End around carry |—>]

0001
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Addition and Subtraction : Twos Comp

4 0100 -4 1100
+ 3 0011 + (-3 1101
! 0111 -7 11| 001 carry-in to sign =
carry-out then
ignore carry
4 0100 -4 1100
-3 1101 + 3 0011
1 ]10001 -1 1111

If carry-in to sign =
carry-out then
ignore carry

e Simpler addition scheme makes twos complement the most common choice for integer
number systems within digital systems
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Addition and Subtraction : Twos Comp

e Why can the carry-out be ignored?

e Add 2’s complement of N to M
—ThisisM-N=M + N*

e |[f M =N, will generate carry
—M+N*=M+(2"-=N)=M-N+ 2"
— Discard carry: just like subtracting 2
— Result is positive M - N

e [fM<N, no carry
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Overflow Conditions

 Add two positive numbers to get a negative number
or two negative numbers to get a positive number
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Twos Complement Overflow

Expected Actual Expected Actual
-7
-2
-9 +7

Overflow Overflow
Expected Actual Expected Actual
-3
-5
-8 +8
No Overflow No Overflow

Overflow when carry in to sign does not equal carry out
5-24
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Iterative Circuit

e Like a hierarchy, except functional blocks per bit
An—an—l Al Bl A{I B{n

X1 X X,

—_— e = et —_——
2= Cennt [TV, e o0 “~, Cell 1 Y, Cello [€7 N0
Y, ——» — - — ——» Y,

C. C, C,

Adders are a great example of this type of design
Design 1-bit circuit, then expand

Look at

00 Half adder — 2-bit adder, no carry in
Inputs are bits to be added
Outputs: result and possible carry

O Full adder — includes carry in, really a 3-bit adder
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Half Adder

Simplest adder block is “half adder”
— Not very useful by itself

X X
X Y C S
arry Sum v 0 1 v 0 1
0 0 0 0 o|lo0 | o o|lo |1
0O 1 0 1
1 O 0 1
1 1 1 0 1 0 1 11 1 0
Carry =AB SuUm=AB+AP

=AlB

o\
j ! /D— >

Half-adder Schematic




ocw.utm.my

Full Adders
e Basic building block is full adder

e Many full-adders are combined to add more than
1 bits

e Truth table:

X
<
@)

Cout
0

w

5

R IFPF(IPIPO OO0
R[OOI, |O|O
R O(kP|O|[FkP|O|FL,|O
RlRr|R|O|R|O|O

R OOk |O|F, |, |O
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Full Adder

XY XY
Ci\_ 00 01 11 10 Ci\_ 00 01 11 10
°lol1]o0]1 °lolo]1]o0
"lT1]10l12|o0 "lTol1]1l1
s=x0OvOc, Cout =XY +XCp, +YC,

=XY+(X+Y)C,

In a multi-stage adder:
0 Variable i indicates stage number.
0 C,, Is carry to i-th stage, also known as C,
0 C,, IS carry to next stage, also known as C,,;
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Full-adder circuit: Straightforward Approach

) O

Cost: 6 Gates,
13 inputs

X » : N
v ]
CIN
—

[

B

—

full adder }
— X

1y S
—1 CIN COUT

.

bt Y

-— COUT CIN fm—

i




ocw.utm.my

Full Adder: Alternative Implementation

Cost: 6 Gates, max. 2 inputs per gate, 3 levels of logic
Advantage: All gates of 2-input type, easier to do VLSI layout

) D C

Coui=XY+YC +XC,
=XY+(X+Y)C,
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Implementation with Two Half Adders (and an OR)

Cost: 5 Gates, 3 levels of logic

| Half adder | | Half adder :

! T (XOY' |

: 7 7 : i ! S
| |

| |

| XY - Z(xoY)

! | e |

! | | |

L T C

Fig. 3-27 Logic Diagram of Full Adder

5-31
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Ripple-Carry Adder

X3 Y3 Xo Yo X Y1 Xp Yo
b v ‘o t
X Y X Y X Y X Y
c, -—— COUT CIN -ca— courT CIN -CE— coutrT CIN -C1— COUT CIN fe— c,
S S S S
' ' ' '
Sq S, S Sq

Straightforward — connect full adders
Carry-out to carry-in chain
— G, in case this is part of larger chain, maybe just set to zero
Speed limited by carry chain
Faster adders eliminate or limit carry chain
— 2-level AND-OR logic ==> 2" product terms
— 3 or 4 levels of logic, carry lookahead
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Overflow Detection

X3 Y3 Xo Yo X Y1 Xp Yo
vy vy Yy 'y
X Y X Y X Y X Y

Cq

¢ 1 COUT CIN T COUT CIN fpe—— COUT CIN fa—— COUT CIN f=— c,

S S S S
i ' ' '
N 83 S 51 So

Overflow

If Overflow = 1, then overflow condition occurs. The output should not be
used, i.e. the output is wrong.

Condition is that either C, or C, is high, but not both (n = #stages)
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Half Subtractor Circuit

Difference

D=XY+XY'=XDOY § f
Borrow
B=XY B

5-34
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Full Subtractor Circuit

XY B, B D

-

X Y

BOUT BIN
D

Difference
D=XDOYUOB,

Borrow out
B.it = XY + X'B,, + YB,

out
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Multi-Stage Full Subtractor

X3 Y3
X Y
out

o
s — X
x o

<|— <
o
e
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Subtraction Using Adders

Subtraction is the same as addition of the two’s complement.
The two’s complement is the bit-by-bit complement plus 1.

Therefore, X - Y=X+Y +1.
0 Complement Y inputs to adder, set C, to 1.

)[3 Y3 )[2 Y2 )J(l Yy }(o
A B A B A B A

—|CO + (I CO + Cl——|CO + Clf&——|CO + Clp—1
S | S S S

1 |

Sy S, Sy So

Overflow Less gates compared to purpose-built subtractor!
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Adder/Subtractor

A3 B|3|§3 A2 I?2§|2 A1 B|1 Ell Ao Eio?)

l 0 1]Sel ‘O 1]1Se ‘O 1]Sel 0 1|Sel
4:-_ 3 U ]

A B A B A B A B

—I|CO + (I CO + Clf&—0O + Cl—O + C|f—e®—Add/Subtract
‘ S S S

S3 Sz Sy So

Use 2:1 multiplexers to choose
Overflow uncomplemented or
complemented inputs

Remember,A-B=A+ (-B) =A+ B+1
So when Add/Sub=0,S=A+B
When Add/Sub=1,S=A+B+1=A-B



ocw.utm.my

Alternative Design

¥ ¥ ¥

FA f—21 FA fe—21 FA

-

Ca

l l i

SB 82 SI
Fig. 3-31 Adder-Subtractor Circuit

Output is 2’s complement if B > A

5-39




