OPENCOURSEWARE

SEE 3223 Microprocessors

4: Addressing Modes

Muhammad Mun’im Ahmad Zabidi (munim@utm.my)

Innovative.Entrepreneurial.Global

ocw.utm.my

Addressing Modes

* Aims
— To review 68000 data transfer instructions and
applying the more advanced addressing modes.

* Intended Learning Outcomes

— At the end of this module, students should be able to

* Review simple addressing modes:
— Register direct addressing mode (2 variations)

— Immediate addressing mode

* Understand:
— Absolute addressing mode in detail
— Address register direct addressing modes (2 variations)
— Address register indirect addressing modes (5 variations)
— Inherent addressing mode

ocw.utm.my @ UTM

68000 Addressing Modes

e The 68000 Addressing Modes are:
— Register Direct Group
[1 Data Register Direct*
[J Address Register Direct
— Immediate*
— Address Register Indirect Group
[J Address Register Indirect
[J Address Register Indirect with Postincrement
[J Address Register Indirect with Predecrement
[1 Address Register Indirect with Displacement
[1 Address Register Indirect with Index
— Absolute Group
[1 Absolute Short
[J Absolute Long
— Program Counter Relative Group
[1 Program Counter with Displacement
[J Program Counter with Index
— Implicit
* Already covered

ocw.utm.my

Data Register Direct

MOVE D1,D2

The operand is found in the data register specified by the
instruction.

EA = Dn (data is found in a data register)
Assembler Syntax: Dn

31

Dn ——

Operand

ocw.utm.my

Address Register Direct

MOVE A0,D2

The operand is found in the address register specified by the
instruction.

EA = An (data is found in an address register)
Assembler Syntax: An

31

AN —

Operand

ocw.utm.my @ UTM

I TEOLON N

Immediate Data

MOVE #5,D2

This addressing mode specifies the address of the operand in memory, the

address follows the opcode. The address is specified high order byte first. The
immediate data size is either Byte, Word or Long.

Immediate value is assumed to be decimal unless indicated otherwise (ie by S for
hexadecimal or @ for octal).

Uses: incrementing loop counters, working with immediate values.
You know the actual value of the data

EA = given

Assembler Syntax: #xxx.SIZE

ocw.utm.my

Immediate Addressing Mode Examples
*/mmediate: an actual

number X is provided.

Registers

D2 XXXX XXXX
D3 XXXX XXXX
AQ 0000 2000
Memory

002000 1234
002002 5678
002004 ABCD

MOVE.B #12, D2

MOVE.W #$12, D2

MOVE.L #12, D2

Registers

D2 XXXX XX0C
D3 XXXX XXXX
AQ 0000 2000
Registers

D2 XXXX 0012
D3 XXXX XXXX
AQ 0000 2000
Registers

D2 0000 000C
D3 XXXX XXXX
AQ 0000 2000

ocw.utm.my @UTM

Address Register Indirect (ARI)
Addressing

MOVE (AOQO) ,D2

This addressing mode specifies the operand in memory, the address of which is
specified by one of the address registers.
The operand is found in the address specified by an address register.

Uses: repeated access to the same memory location

EA = (An)
Assembler Syntax: 0050
0052
i? 0060 E4 0054
0056
A2 0058
A3 0054
A 005C
45 005€
—— [FEOC_| 0060
i‘; 0062
0064

0066

ocw.utm.my @ HTM

Address Register Indirect Addressing

RTL Form: [DO] < [M([AQ0])]

This instruction means load
\ DO with the contents of the
AN Memory location pointed at by
AO | movE.B (A0)),D0 address register AO

2000

2000 00

The address register in the instruction

specifies an address register that holds
the address of the operand

ocw.utm.my

Address Register Indirect Addressing

Memory

A0 MOVE.B (A0),DO

2000 J—‘

2000+ 63 63

The address register is used to access

the operand in memory

DO

ocw.utm.my @ QTM

Address Register Indirect Addressing

Memory

A0 MOVE.B (A0),DO

1000
1ooo_|—> 63 | b 63 D0

Finally, the contents of the address register
pointed at by AO are copied to the data register

*Reqister Indirect. accesses
the contents of the memory

location in the indicated

register.

Registers

D2 XXXX XXXX

D3 XXXX XXXX

AOQ 0000 2000

Memory

002000 1234
002002 5678
002004 ABCD

ocw.utm.my

ARI Examples

MOVE.B (AO), D2

MOVE.W (AO), D2

MOVE.L (AO), D2

Registers

D2 XXXX XX12
D3 XXXX XXXX
AQ 0000 2000
Registers

D2 XXXX 1234
D3 XXXX XXXX
AQ 0000 2000
Registers

D2 1234 5678
D3 XXXX XXXX
AQ 0000 2000

ocw.utm.my ©UIM

ARI with Postincrement/
Predecrement

In the 68000, the increment/decrement depends on the operand
Size
— Suppose A0 = S00002000

MOVE .B (A0)+,D0 — A0 = $00002001
MOVE . W (A0)+,D0 — A0 = $00002002
MOVE. L (A0)+,D0 — A0 = $00002004

If the addressing mode is specified as (A0)+,the contents of the
address register are incremented after they have been used

ocw.utm.my

ARI with Postincrement

MOVE (AO)+,D2

This addressing mode specifies the operand in memory, the address of which is specified
by one of the address registers. After the operand is used, the value in the address
register is incremented according to the size of the operand.

— +1 byte

— +2 word

— +4 long word
The operand is found in the address specifie
Uses: moving through an array, popping fror
EA = (An); An incremented after use
Assembler Syntax: (An)+

A0
Al
A2
A3
A4
A5
A6
A7

[Size |

0060

EA

©

UTM

I FIOLON A

0050

0052

0054

0056

0058

0054

005C

005E

FEOC

0060

0062

0064

0066

ocw.utm.my @ HTM

ARI with Postincrement

Memory

AO MOVE.B (A0)+,DO

2000
zooo_|—> 00

The address register contains 2000
and points at location 2000

ocw.utm.my

ARI with Postincrement

Memory

AO MOVE.B (AO)+,DO

2000
2000_|—> ?3— 63

2001

Address register AO is used to access memory
Location 2000 and the contents of this location
(i.e., 63) are added to DO

DO

ocw.utm.my

ARI with Postincrement

Memory
AO MOVE.B (AO0)+,DO
2000
2000 63
2001 — 43

After the instruction has been executed,
the contents of AO are incremented to
point at the next location

DO

ocw.utm.my

ARI with Postincrement Examples

*Post-increment. Operand

is accessed indirectly, then MOVE.B (A0)+, D2

address register is
incremented.

Registers

D2 XXXX XXXX

D3 XXXX XXXX

AOQ 0000 2000

Memory

002000 1234
002002 5678
002004 ABCD

MOVE.W_(A0)+, D2

MOVE.L (AO)+, D2

Registers

D2 XXXX XX12
D3 XXXX XXXX
AQ 0000 2001
Registers

D2 XXXX 1234
D3 XXXX XXXX
AQ 0000 2002
Registers

D2 1234 5678
D3 XXXX XXXX
AQ 0000 2004

I FIOLON A

ocw.utm.my @ UTM

ARI with Predecrement

MOVE - (AO0) , D2

This addressing mode specifies the operand in memory, the address of which is specified
by one of the address registers. Before the operand is used, the value in the address

register is decremented according to the size of the operand.
— -1 byte
— -2 word
— -4 long word
The operand is found in the address specified by an address register.
Uses: moving through an array, pushing onto stack
EA = (An) — SIZE; An decremented before use

Assembler Syntax: -(An) | s | gggg
i? 0064 EA 054

0056

42 0058

A3 0054

A4 005C
A5 005E
— | FEOC | 0060

ig 0062
0064

0066

ocw.utm.my

ARI with Predecrement Examples

Pre-decrement: Registers
Address register is
. D2 XXXX XX78
decremented, then operand is MOVE.B - (A0), D2
accessed indirectly. ' ’ D3 XXXX XXXX
- AQ 0000 2003
Registers
D2 XXXX XXXX Registers
D3 XXXX XXXX D2 XXXX 5678
A0 0000 2004 MOVE.W - (A0), D2 D3 |XXXX XXXX
AQ 0000 2002
Memory
002000 1234 Registers
002002 5678 D2 1234 5678
MOVE.L -(AQO), D2
002004 ABCD (R0) D3 XXXX XXXX
AQ 0000 2000

ARI with Displacement

MOVE

ocw.utm.my

16 (A0) ,D2

©

An 16-bit displacement value is added to the memory address in the indicated
register to form the effective address, then the contents of the effective address

are accessed
EA = (An) +d,,

Assembler Syntax: d,¢(An)

A0
A1
A2
A3
A4
A5
A6
A7

31

Displacement|

| s10 |

0050

EA

)

FEOC

0050
0052
0054
0056
0058
0054
005C
005E
0060
0062
0064
0066

UTM

I FIOLON A

ocw.utm.my

©UIM

ARI with Displacement Examples

ARI with Dis.placement: An Registers
index value is added to the 5 — c
memory address to form the D AECD
effective address. MOVE.W 2(A0), D2 D3 | XXXX XXXX
. A0 0000 2002
Registers
D2 XXXX XXXX Registers
D3 XXXX XXXX D2 XXXX 1234
A0 | 0000 2002 MOVE.W -2 (A0), D2 D3 |XXXX XXXX
Memory A0 0000 2002
002000 1234 Registers
002002 o678 D2 |1234 5678
002004 ABCD MOVE.L -2(A0), D2 D3 | XXXX XXXX
A0 0000 2002

ocw.utm.my QED[TTLJ

U PIROLON A

ARI with Displacement Examples

Memory

Address Value

002000 95

002002 89 struct Student {

002004 83 int gradel;
int grade2;

int grade3;
i

struct Student Ali, Kumar;
MOVE.L #$002000,A0
Total Ali = Ali.gradel +

CLR.L D1 ,
Ali.gradeZ +
ADD.W (AO) ,D1 Ali.grade3;
ADD.W 2 (A0) ,D1
Avg Ali = Total Joe / 3;
ADD.W 4 (A0) ,D1
DIV.W #3, D1

ocw.utm.my @ UTM

ARI with Index

MOVE 2 (A0,DO),D2

This addressing mode specifies the operand in memory, the address of which is

specified by one of the address registers plus the value in an index register, plus
the sign extended 8 bit displacement specified as part of the instruction.

EA = (An) + (Xn) + dg
Assembler Syntax: dg(An,Xn.SIZE)

31

Displacement| 2 |

0050

A 0050 EA 0052
0054

Al (056
A2 0059
A3 0054
J.E | 005C
A5 (05E
16 —— | FEOC |0060
Iv, 0062
0064

31 0066

Index| 0OOE —

ocw.utm.my @ UTM

I TELON AT

Absolute Addressing

In direct or absolute addressing, the instruction provides the address of the
operand in memory.

Direct addressing requires two memory accesses. The first is to access the
instruction and the second is to access the actual operand.
Involves memory access

— Store operation: data from processor to memory

— Load operation: data from memory to processor

Uses: moving stored variables from memory into registers for processing, storing
results back to memory.

You know the actual address ($001020) of the data, so you need to get it from
there.

ocw.utm.my @ UTM

I FIOLON A

Absolute Long

MOVE $001020,D2

This addressing mode specifies the address of the operand in memory, the

address of which is specified by two extension words which follow the opcode.
The address is specified high order byte first.

EA = given
Assembler Syntax: xxx.L

ocw.utm.my

Absolute Long Examples

Registers
*Absolute Long:
accesses the contents of D2 XXXX 1234
the indicated memory ~ OVE-W $002000, D2 D3 |XXXX XXXX
location. A0 0000 2000
Registers Registers
D2 XXXX XXXX oo ——
D3 | XXXX XXXX MOVE.B $002000, D2 A Pr—
AQ 0000 2000 20 0000 2000
Memory Registers
002000 1234 D2 1234 5678
002002 5678 D3 XXXX XXXX
002004 ABCD MOVE.L $002000, D2 A0 0000 2000

ocw.utm.my @ QTM

Absolute Addressing

The effect of MOVE.B 20, DO
IS to read the contents of memory
location 20 and copy them to DO

Memory

MOVE.B 20,D0

20 S5

53 DO

ocw.utm.my @ UTM

Absolute Short

MOVE $1020,D2

This addressing mode specifies the address of the operand in memory, the
address of which is specified by one extension word which follow the opcode.
The 16 bit address is signed extended to 32 bits before being used.

EA = given
Assembler Syntax: xxx.W

Uses: similar to absolute long, but saves a word in the instruction

Assembler will determine whether the memory address is suitable for absolute
short. Programmer normally don’ t have to know which mode (short/long) is
used, but we can tell by the address used by the instruction.

Limited to address SO00000 to SOO7FFF, and SFF8000 to SFFFFFF.

ocw.utm.my ©UIM

Program Counter with Displacement

This addressing mode permits memory to be accessed relative to the current
value of the Program Counter. The major use is for jumps in position
independent code (PIC), and reading constants in code segments.

EA = (PC) + d
Assembler Syntax: d,¢(PC)
* Simple example of PC addressing
MOVE .B TABLE (PC) ,D2

TABLE DC.B Valuel
DC.B Value?2

ocw.utm.my <:§Lyrhd

T TENON AT

Program Counter with Index

* This addressing mode extends the program counter relative mode to include an
index and offset value. The effective address of the operand is the sum of the
extension word, a sign extended 8-bit displacement integer, and the contents of
an index register. This effectively handles lists or tables.

EA = (PC) + (Xn) + dg

* Assembler Syntax: dg(PC,Xn.SIZE)
* Simple example of PC addressing

MOVE.W #2,D0
MOVE.B TABLE (PC,D0),D2

TABLE DC.B Valuel
DC.B Value?2

ocw.utm.my

Inherent

* CCR = Condition Code Register (8bit)

— to CCR
* ANDI
* EORI
* MOVE
* ORI

e SR = Status Register (16bit)
— to SR
* ANDI
* EORI
« MOVE
* ORI
— from SR
« MOVE

ocw.utm.my @ UTM

I TEOLON N

Memory Usage

* How many bytes for a 68000 instruction?
— 68000 has 16-bit word size, 24-bit address size
— Thus, one word fills 2 bytes, an address specification fills 2 words

* Depending on instruction, an instruction word is followed by
optional extension words for each operand

— Data or address register none
— Absolute address 2 ext. words
— Immediate value 1 or 2 ext. words
— Indirect register address none
— Autoincrement/autodecrement none
— Indexed/relative 1 ext. word

— Absolute/immediate 1 ext. word for byte/word, 2 ext. words for long

ocw.utm.my Q:D

. Fancy Uses of Addressing Modes

* Block copy: copy 10 words from $2000-$2009 to $3000-$3009

*

ORG $1000

LEA SRCBLK, A0

LEA DSTBLK, Al

MOVE.W #10,DO0
LOOP MOVE.B (AO0)+, (Al)+

SUB.W #1,DO

BNE LOOP

STOP #52000

*

* Data section
*

ORG $2000
SRCBLK DC.W 1,4,9,16,25,36,49,64,81,100
DSTBLK EQU $3000

END $1000

ocw.utm.my

Fancy Uses of Addressing Modes

*

* String reverse: reverse a string and copy new string
*

ORG $1000
LEA STRING1,6A0
LEA STRINGZ2 Al

MOVE.W #LENGTH,DO
LOOP MOVE.B (A0)+,- (Al)

SUB.W #1,DO0

BNE LOOP

STOP #$2000

*

* Data section
*

STRING1 DC.B '68000 IS FUN'
LENGTH EQU *-STRING1
STRING2 EQU *+LENGTH

END $1000

* Exchange words in $100 and $102

Solution 1:

Solution 2:

ocw.utm.my e{jLITLd

N PO AT

Programming Example 1

MOVE . L
SWAP
MOVE . L

MOVE . W
MOVE . W
MOVE . W

$100,D0 ;
DO ;
DO0,$100 ;

$102,5104
$100,5102
$104,5102

load example
Swap top word with bottom word
store example

; memory to memory

Programming Example 2

e Clear high word of DO

Solution 1:

Solution 2:

SWAP
CLR
SWAP

MOVE. L
CLR.W
MOVE. L

DO
DO
DO

D0, $100
$100
$100,DO

ocw.utm.my

©UIM

ocw.utm.my ©UIM

Summary - “Easy Addressing Modes

* Register direct addressing is used for variables that can be held in registers:
ADD.B D1,DO

e Literal (immediate) addressing is used for constants that do not change:
ADD.B #24,D0

* Direct (absolute) addressing is used for variables that reside in memory:
ADD.B 1000,DO

ocw.utm.my ®©UTM

Summary - ARl Addressing Modes

Address Register Indirect (ARI):

ADD.B (AO),DO ; No change to A0
ARI with Postincrement:
ADD.B (A0)+,DO A0 is incremented after use

ARI with Predecrement

MOVE.L -(A0O) ,D3 AQ is first decremented by 4
ARI with Displacement

MOVE.L -2 (A0) ,D3 ; No change to A0
ARI with Index

MOVE.L -2 (A0,DO),D3 ; No change to A0

4-39

ocw.utm.my @HTM

N RN AT

Summary - Other Addressing Modes

Program Counter Relative Addressing

— Program Counter With Displacement
MOVE.W 2 (PC),DO
— Program Counter With Index
MOVE.W 2 (PC,D3),DO
PC can be used only for SOURCE OPERANDS

