Number Systems

- Standard number systems
 - Decimal
 - Binary
 - Hexadecimal
 - Octal
 - Fractional number representation
- Binary Codes
 - BCD
 - Gray Codes
 - ASCII
- Representation of negative numbers
 - Sign magnitude
 - 1's complement and 2's complement
- Arithmetic operations using 2's complement

Sign-Magnitude

- Left most bit is the sign bit, remaining bits are magnitude bits
- Examples:

$$00011001$$
 => $+25_{10}$

Magnitude bits

Sign bit '0' indicates positive number

 $10011001 => -25_{10}$ Magnitude bits

Sign bit '1' indicates negative number

Sign-Magnitude

 Find the equivalent decimal of the following sign-magnitude binary

$$-0100\ 0100 => 2^6 + 2^2 => 68$$
 $-1011\ 0011 => -(2^5 + 2^4 + 2^1 + 2^0) => -51$

 Find the equivalent sign-magnitude binary of the following decimal numbers

$$-61 => 25 + 24 + 23 + 21 + 20 => 0011 1011$$
$$-116 => -(26 + 25 + 24 + 22) => 1111 0100$$

1's Complement

- Negative numbers are the complement of the positive numbers and vice versa
- Example:

```
1's complement: 0\ 0\ 0\ 1\ 1\ 0\ 0\ 1 => 25_{10}
```

How to get -25_{10} ?

Taking the 1's complement,

1's complement: $11100110 = > -25_{10}$

 Given 1100 1110 in 1's complement, how to find its equivalent decimal?

```
1's complement: 1 1 0 0 1 1 1 0
```

Taking the 1's complement,

```
1's complement: 0\ 0\ 1\ 1\ 0\ 0\ 1 => 49_{10}
```

(Standard binary)

Therefore, 1 1 0 0 1 1 1 0 is -49₁₀

 Find the equivalent decimal of the following 1's complement binary:

$$-0010\ 1101$$
 => $2^5 + 2^3 + 2^2 + 2^0$ => 45
- $1111\ 0101$ => $0000\ 1010$ => $-(2^3 + 2^1)$ => -10

 Find the equivalent 1's complement binary of the following decimal:

$$-132_{10} => 2^7 + 2^2 => 0 \ 1000 \ 0100$$

 $-84_{10} => -(2^6 + 2^4 + 2^2) => -(0101 \ 0100) => 1010 \ 1011$

2's Complement

- 1's complement incremented by 1
- Example:

```
2's complement: 0\ 0\ 0\ 1\ 1\ 0\ 0\ 1 => 25_{10}
```

How to get -25_{10} ?

Taking the 1's complement,

1's complement: 1 1 1 0 0 1 1 0

Increment by 1

2's complement: $11100111 = > -25_{10}$

 Given 1100 1110 in 2's complement, how to find its equivalent decimal?

2's complement: 1 1 0 0 1 1 1 0

Taking the 1's complement,

1's complement: 0 0 1 1 0 0 0 1

Increment by 1

2's complement: $0\ 0\ 1\ 1\ 0\ 0\ 1\ 0 => 50_{10}$

Therefore, 1 1 0 0 1 1 1 0 is -50_{10}

 Find the equivalent decimal of the following 2's complement binary:

$$-0010\ 1101$$
 => $2^5 + 2^3 + 2^2 + 2^0 => 45$
- $1111\ 0101$ => $0000\ 1011 => -(2^3 + 2^1 + 2^0) => -11$

 Find the equivalent 2's complement binary of the following decimal:

$$-132_{10} => 2^7 + 2^2 => 0 \ 1000 \ 0100$$

$$-84_{10} = -(2^6 + 2^4 + 2^2) = -(0101\ 0100) = 1010\ 1100$$

Example

Fill in the following table

Decimal	Sign- Magnitude	1's Complement	2's Complement
+19	0001 0011	0001 0011	0001 0011
-19	1001 0011	1110 1100	1110 1101

Why is there 3 standards in representing negative numbers?

- ⇒There are limitations in sign-magnitude and 1's complement representation, therefore, 2's complement representation is the standard today
- ⇒Limitation of sign magnitude and 1's complement
 - ⇒There are two representations of zero

Digit Group

Terminology for groups of bits

Digit Group	Amount of Bit
Quad-Word	64
Double-Word	32
Word	16
Byte	8
Nibble	4
Bit	1

Example

- What does the byte 0101 0000₂ means?
 - 50 (hexadecimal)
 - -50 (BCD)
 - 120 (octal)
 - 80 (decimal equivalent of binary)
 - 0111 1000 (Gray Code equivalent)
 - Character 'P' (ASCII equivalent)
 - 80 (decimal equivalent of sign-magnitude)
 - 80 (decimal equivalent of 1's complement)
 - 80 (decimal equivalent of 2's complement)

2's Complement Arithmetic

- We will look only at Byte addition and subtraction of 2's complement number
- In Byte 2's complement, the largest number that can be represented is 0111 1111 (127) and the lowest is 1000 0000 (-128)
- If addition or subtraction exceeds 127 or -128, then the result will be incorrect
- This condition of incorrect result is called overflow

2's Complement Arithmetic (cont.)

Range of Byte 2's complement

2's complemer	Decimal	
0111 1111	=>	127
0111 1110	=>	126
0111 1101	=>	125
	•••	•••
0000 0010	=>	2
0000 0001	=>	1
0000 0000	=>	0
1111 1111	=>	-1
1111 1110	=>	-2
•••		•••
1000 0011	=>	-125
1000 0010	=>	-126
1000 0001	=>	-127
1000 0000	=>	-128

When adding/subtracting
Byte 2's complement number,
make sure the result is within
range

2's Complement Addition

Add additional sign-bit => Result = 183

2's Complement Subtraction

- Take the 2's complement of the subtrahend, then do addition
- Example: 8 3
 - Take 2's complement of 3 => 1111 1101
 - Do addition (now its 8 + (-3))

Discard carry