

SEE1223: Digital Electronics

2 – Logic Gates and Boolean Algebra

Zulkifil Md Yusof

Dept. of Microelectronics and Computer Engineering
The Faculty of Electrical Engineering
Universiti Teknologi Malaysia

Logic Gates and Boolean Algebra

- Logic Gates
 - Inverter, OR, AND, Buffer, NOR, NAND, XOR, XNOR
- Universal Gates
 - NAND and NOR
- Boolean Theorem
 - Commutative, Associative, Distributive
 - Basic Rules
- DeMorgan's Theorem
- Canonical/Standard Forms of Logic
 - Sum of Product (SOP)
 - Product of Sum (POS)
 - Minterm and Maxterm

Inverter/Not Gate

Inverter/Not Gate

Timing Diagram

OR Gate

X	Y	Z = X + Y
0	0	0
0	1	1
1	0	1
1	1	1

AND Gate

X	Y	$Z = X \cdot Y$
0	0	0
0	1	0
1	0	0
1	1	1

Buffer

X	Z = X
0	0
1	1

Buffer

How to design buffers? Clue: NOT gates

- What is the use of buffers?
 - Refresh weak signals
 - Purposely put delays

XOR

Logic Symbol and Truth Table

$$X \longrightarrow Z = X \oplus Y$$

X	Y	$Z = X \oplus Y$
0	0	0
0	1	1
1	0	1
1	1	0

Result is '1' when exactly one input is '1'

XOR

 How to make XOR using basic gates (AND, OR, NOT)?

$$Z = X \oplus Y$$
$$= X \cdot \overline{Y} + \overline{X} \cdot Y$$

XNOR

Logic Symbol and Truth Table

$$\begin{array}{c} X \\ Y \end{array} \longrightarrow \begin{array}{c} \\ Z = \overline{X \oplus Y} \end{array}$$

X	Y	$Z = \overline{X \oplus Y}$
0	0	1
0	1	0
1	0	0
1	1	1

Result is '1' when both inputs are the same logic

XNOR

 How to make XNOR using basic gates (AND, OR, NOT)?

$$Z = X \oplus Y$$
$$= \overline{X \cdot \overline{Y} + \overline{X} \cdot Y}$$

NOR

Logic Symbol and Truth Table

X	Y	$Z = \overline{X + Y}$
0	0	1
0	1	0
1	0	0
1	1	0

Result is '1' only when both inputs are '0'

NOR

How to make NOR gate using basic gates?

$$Z = \overline{X + Y}$$

NAND

Logic Symbol and Truth Table

X	Y	$Z = \overline{X \cdot Y}$
0	0	1
0	1	1
1	0	1
1	1	0

Result is '0' only when both inputs are '1'

NAND

How to make NAND gate using basic gates?

$$Z = \overline{X \cdot Y}$$

Example

Draw the timing diagram for the following

