
SEE3243

Digital System

Lecturers :
Muhammad Mun'im Ahmad Zabidi

Chapter 2: Logic Theory

Muhammad Nadzir Marsono
Kamal Khalil

Implicant, Prime Implicant and Essential Prime

Implicant

• Implicant - a single minterm or group of

minterms that can be combined together on the

K-map. A'B'C', A'BC', A'BC, ABC, A'C', A'B, and

BC.

• Prime Implicant - Implicant that can not be

combined with another one to remove a literal.

1
0

110
1

0
0

1
0

110
1

0
0A

BC

F(A,B,C) = Σm(0,2,3,7)

A’B

2-2

combined with another one to remove a literal.

A'C', A'B, BC.

• Essential Prime Implicant - A prime implicant

that includes a minterm not covered by any

other prime implicant. A'C' and BC. Why? A’B’C’

only covered by A’C’ and ABC only covered by

BC.

010
0
0
0
1

1

5

3

7 6

0
2

10
0

1

0

4

1

1

11

BC

A’C’

Finding Minimum Expression

• Draw the K-map and put 1’s in each square that corresponds

to a minterm of the function.

• Find the prime implicants. Groups must be a power of 2.

• Find the essential prime implicants. An essential prime

implicant is a prime implicant that includes 1’s that are not

2-3

implicant is a prime implicant that includes 1’s that are not

covered by any other prime implicants.

• Write down the minimized expression. First write down all

essential prime implicants. If there are any 1's not covered by

prime implicants, carefully select prime implicants to cover

the remaining 1's. Note, you may have to try several

selections to find the minimal form of the expression.

Confuse with the steps? Another example

• Use a K-map to simplify the following Boolean function:

F(A,B,C,D) = ΠM(0,1,2,4,9,11,15)

F(A,B,C,D) = Σm(3,5,6,7,8,10,12,13,14)

1
0

110
1

0
0

0
1 3

1
0

2

110
1

0
0

0
0

AB
CD 1

0
110

1
0
0

0
1 3

1
0

2

110
1

0
0

0
0

AB
CD

1
0

110
1

0
0

0
1 3

1
0

2

110
1

0
0

0
0

AB
CD

2-4

0
0
0
1
11

1
0

12

8

1

5

13

9

3

7

15

11 10

14

6

2
0
0
0
1

0

4

11

1
0

0
0
0
1
11

1
0

12

8

5

13

9

7

15

11 10

14

6

0
0
0
1

4

11

1
0

0
0
0
1
11

1
0

12

8

5

13

9

7

15

11 10

14

6

0
0
0
1

4

11

1
0

1

1

1 1

1

1

11

1

1

1

1 1

1

1

11

1

1

1

1 1

1

1

11

1

Prime Implicants Essential Prime
Implicants

Final Expression

F(A,B,C,D) = BC'D + AD' + A'CD + BCD'

Entered Variable K-Map (EVM)

• EVM extends map for function with too many variable for a

ordinary Karnaugh Map

• Let say ordinary K Map has n map variable. So far we’ve

looked to 4 map variables, max.

• If a function has (m+n) variables, to be fit into n-bit K-map, m-

2-5

• If a function has (m+n) variables, to be fit into n-bit K-map, m-

bit must reside into n-bit minterm in K map as entered

variable.

• Fortunately, in this lecture, m = 1

• Confuse?

An example

• F = A’BCD + A’B’CDE + ABC’D’E’

+ A’BC’DE’

• A,B,C,D - map variables.

• E - entered variable. The entered variable

completes the expression represented by the

map variables.

• The second term is loaded in the 0011 cell

10110100

00

01

1

5

3

7 6

10

2

110100

00

01

0

4

AB

CD

E’

E

1

2-6

• The second term is loaded in the 0011 cell

because of A’B’CD. The cell is loaded with E to

complete the term.

• The final 2 terms are treated in the same way.

For ABC’D’E’, the 1100 cell is loaded with E. For

A’BC’DE’ the 0101 cell is loaded with E’.

11

10

12

8

13

9

15

11 10

14
11

10

E’

SOP example

• In this example, a function with 4 variables

need to be re-organise in K-map with 3 map

variables only.

• In the above K-map, in every combination

of A,B and C, we will compare the output

with variable D.

• If the output is the complement of D, put D’

1
0

110
1

0
0

0
0
0
1
11

1
0

12

8

1

5

13

9

3

7

15

11 10

14

6

1
0

2

110
1

0
0

0
0
0
1

0

4

11

1
0

AB
CD

1

11

1

1 1

11

ABC’

A’B’C’

ABC’

2-7

• If the output is the complement of D, put D’

inside that particular cell.

• Another way is by using truth table first,

then into 3-bit K map.

1
0

110
1

0
0

0
0
0
1

1

5

3

7 6

1
0

2

110
1

0
0

0

1

0

4

A
BC

D

D

D’

D’ 1

D’0

D

ABC’

AB’C

ABC’

SOP example
• From previous function, let say F, we first organise

it into a truth table.

• Then find the entered variables.

• Reorganise into 3-bit K map.

A B C D F EV

0 0 0 0 0
0

0 0 0 1 0

0 0 1 0 0
D

0 0 1 1 1

0 1 0 0 1
D’

0 1 0 1 0

1
0

110
1

0
0

0
0

1 3

1
0

2

110
1

0
0

0
0

0

AB
CD

1

2-8

0 1 0 1 0

0 1 1 0 1
D’

0 1 1 1 0

1 0 0 0 0
D

1 0 0 1 1

1 0 1 0 0
D

1 0 1 1 1

1 1 0 0 1
1

1 1 0 1 1

1 1 1 0 1
D’

1 1 1 1 0

1
0

110
1

0
0

0
0

0
1

1

5

3

7 6

1
0

2

110
1

0
0

0

1

0

4

A
BC

D

D

D’

D’ 1

D’0

D

0
0
1
11

1
0

12

8

5

13

9

7

15

11 10

14

6
0
0
1

4

11

1
0

11

1

1 1

11

How to minimise EVM

EVM grouping rules

• Entered variables can be grouped with

– Other identical entered variables

– 1s

• Find and circle all the single EV’s which cannot be grouped

• Find and group all single EV’s which can be grouped in only one way with

other entity

2-9

other entity

• Find and group all single EV’s which can be grouped in more than one way.

Group these variables

– first with another identical ungrouped entered variable

– second with uncovered or partially covered 1

– make arbitrary choice when needed

Example 1

• Still the same function.

• ‘1’ in ABC’ can be decomposed to D+D’.

• Then, group the identical entered variables.

• Follow the procedure.

• F(A,B,C,D) = BD’ + B’CD + AC’D

10110100

00

01

1

5

3

7 6

10

2

110100

0

1

0

4

A
BC

D

D

D’

D’ 1

D’0

D

10110100

00
1 3

10

2

110100

0
0

A
BC

2-10

00

01

1

5

3

7 6

2
0

1

0

4
D

D

D’

D’ D’+D

D’0

D

• Now, compare function F from EVM in previous slide with the minimisation result

from the original 4-bit K map.

• Do you get the same answer?

10110100

00

01

1

5

3

7 6

10

2

110100

00

01

0

4

AB
CD

1

2-11

01

11

10

12

8

13

9

15

11 10

14

01

11

10

11

1

1 1

11

F(A,B,C,D) =

Example 2

• Lets call this function G.

– ‘1’ in A’B’C’ can be decomposed

to D+D’.

– Then, group the identical

entered variables. 10110100 10110100
BC

10110100

00

01

11

10

12

8

1

5

13

9

3

7

15

11 10

14

6

10

2

110100

00

01

0

4

11

10

AB
CD

1 1

1 1

1

1

1

1

1

entered variables.

• Follow the procedure.

– F(A,B,C,D) = CD + B’C’D’ + BC +

A’B’D

2-12

10110100

00

01

1

5

3

7 6

10

2

110100

0

1

0

4

A
BC

D

D

1

1 0

01

D’

10110100

00

01

1

5

3

7 6

10

2

110100

0

1

0

4

A
BC

D

D

1

1 0

01

D’

• Now, compare function G from EVM in previous slide with the

minimisation result from the original 4-bit K map.

• Do they yield the same answer?

10110100

00
1 3

10

2

110100

00
0

AB
CD

1 11

2-13

01

11

10

12

8

5

13

9

7

15

11 10

14

6
01

4

11

10

1 1

1

1

1

1

G(A,B,C,D) =

Example 3

• Change 1 to E+E’

• Then group entries with neighbour cells that

have the same entered variable

• Note that all the entities are covered

• F = ABC’D’E’ + A’BDE’ + A’CDE

10110100

00

01

11

10

12

8

1

5

13

9

3

7

15

11 10

14

6

10

2

110100

00

01

0

4

11

10

AB

CD

E’

E

1

E’

2-14

10110100

00

01

11

10

12

8

1

5

13

9

3

7

15

11 10

14

6

10

2

110100

00

01

0

4

11

10

AB

CD

E’

E

E’+E

E’

Example 4

• What if not all entities covered?

• In this example, partially covered ‘1’ at A’BCD

must be covered (so that the E’ variable is

covered).

• Thus, F = ABC’D’E’ + A’BCE + A’CDE + A’BCD

10110100

00

01

11

10

12

8

1

5

13

9

3

7

15

11 10

14

6

10

2

110100

00

01

0

4

11

10

AB

CD

E

1 E

E’

CD

2-15

10110100

00

01

11

10

12

8

1

5

13

9

3

7

15

11 10

14

6

10

2

110100

00

01

0

4

11

10

AB

CD

E

E’+E E

E’

Example 5

• F is a function of A,B,C,D,E.

• Let E become entered variable A B C D E F A B C D E F

0 0 0 0 0 1 1 0 0 0 0 1

0 0 0 0 1 1 1 0 0 0 1 1

0 0 0 1 0 0 1 0 0 1 0 1

0 0 0 1 1 0 1 0 0 1 1 0

0 0 1 0 0 1 1 0 1 0 0 1

0 0 1 0 1 1 1 0 1 0 1 1

0 0 1 1 0 0 1 0 1 1 0 1

10110100

00
1 3

10

2

110100

00
0

AB

CD

11

2-16

0 0 1 1 0 0 1 0 1 1 0 1

0 0 1 1 1 0 1 0 1 1 1 0

0 1 0 0 0 0 1 1 0 0 0 0

0 1 0 0 1 0 1 1 0 0 1 0

0 1 0 1 0 1 1 1 0 1 0 1

0 1 0 1 1 0 1 1 0 1 1 0

0 1 1 0 0 1 1 1 1 0 0 0

0 1 1 0 1 0 1 1 1 0 1 0

0 1 1 1 0 0 1 1 1 1 0 0

0 1 1 1 1 0 1 1 1 1 1 1

01

11

10

12

8

5

13

9

7

15

11 10

14

6
01

4

11

10

E’ E’

E’

E’

E

E’ 11

F(A,B,C,D,E)
= B’D’ + AB’E’ + BC’DE’ +

A’CD’E’ + ABCDE

How to solve EVM in POS?
• Almost the same procedure like solving EVM

in SOP.

• The differences,

– Group identical EV

– Substitute ‘0’ with EV.EV’ (Example D.D’).– Substitute ‘0’ with EV.EV’ (Example D.D’).

– Except for 0-0 grouping, complement EV when

writing in SOP.

• Complement using De-Morgan

• More confused? You should.

2-17

Example 1
• Lets call this function H.

• Note that in cell A’B’C’, the EV is

‘0’, and written as D’.D.

10110100 10110100
A

BC

10110100

00

01

11

10

12

8

1

5

13

9

3

7

15

11 10

14

6

10

2

110100

00

01

0

4

11

10

AB
CD

0

0 0

00

0

00

2-18

H(A,B,C,D) = (B+D)(A+C+D’)(B’+C’+D’)
H’(A,B,C,D) = B’D’ + A’C’D + BCD

00

01

1

5

3

7 6

2
0

1

0

4

A

D

D

D’

D’ 1

D’D’.D

D

• Now, compare function H from EVM in previous slide with the

minimisation result from the original 4-bit K map.

• Do they yield the same answer?

10110100

1 3

10

2

110100

0

AB
CD

2-19

00

01

11

10

12

8

1

5

13

9

3

7

15

11 10

14

6

2
00

01

0

4

11

10

0

0 0

00

0

00

H(A,B,C,D) =

H’(A,B,C,D) =

DIY
• Now, you try.

• Check your answer with 4-bit K map POS minimisation.

1
0

110
1

0
0

0
0

1

5

3

7 6

1
0

2

110
1

0
0

0
0

0

4

AB
CD

0EVM

2-20

10110100

00

01

1

5

3

7 6

10

2

110100

0

1

0

4

A
BC

0
1
11

1
0

12

8

5

13

9

7

15

11 10

14

6
0
1

4

11

1
0

00

0

0 0

0

H(A,B,C,D) =

H’(A,B,C,D) =

H(A,B,C,D) =

H’(A,B,C,D) =

EVM

4-bit K map

Logic Transformation

• By performing transformation operations, different (and possibly simpler)

gate networks for the same function are possible.

• Simple equivalencies:

• Based on DeMorgan’s Theorems

– (AB)’=A’+B’

– (A+B)’=A’B’

• Thus, AND-OR networks can be transformed to OR-NAND, NAND-NAND,

NOR-OR, etc.

2-21

Example

• This transformation changes AND-OR

form into OR-NAND form.

• However, usually we are interested in

transforming circuit (SOP or POS) into

negative logics (yes.. NAND, NOR,

Inverter).

• Why? Negative logic is extensively used

A

B

C

D

F

A’

B’

C

F• Why? Negative logic is extensively used

in VLSI.

2-22

C
’D’

A’

B’

C
’D’

F

Another Example (NAND-NAND)

F
F

A
B
D
E

C

D
E

A
B
D
E

C

D
E

2-23

A
B
D
E

C

D
E

F

A
B
D’
E’

C

D’
E’

F

Another Example (NOR-NOR)

F

A
B
D
E

C

D
E

F

B
D
E

C

D
E

A

2-24

F

B
D
E

C

D
E

A

F

B’
D
E

C’

D
E

A’

F

Inverter

Why???

Transformation: General Rules (AND-OR-INVERTER

Network only)

• To convert to NAND-only form

– Begin with SOP form with an OR gate output (if

not, add inverter at the output later)

– AND (odd level) and OR (even level) gates must

alternate between levels! (1,2,..n)alternate between levels! (1,2,..n)

– Level 0 for input

– Replace all gates with NAND gates

– Put inverter if no gate between 2k (k = 1,2,..m)

level.

• Algorithm for NOR-form is similar, but start with POS form, OR (odd level)

and AND (even level). Still, if the output is not AND gate, add inverter later.

2-25

Example 1 (NAND-NAND)

F

A
B
D
E

C

D
E

2-26

Level-0 Level-1 Level-2 Level-3 Level-4 Level-5

A
B
D’
E’

C

D’
E’

F

Example 2 (NOR-NOR)

F

A
B
D
E

C

D
E

2-27

Level-0 Level-1 Level-2 Level-3 Level-4 Level-5

F

A’

B’
D
E

C’

D
E

DIY 1

• Implement this function using NAND-NAND transformation (don’t derive

the K-map or the truth table)

F(A,B,C,D,E,F,G,H,I,J) = ((A+B)+C+DE).((G+H).F.I).(J)

2-28

DIY 2
• Implement this function using NOR-NOR transformation

• F(A,B,C,D) = (B+D)(A+C+D’)(B’+C’+D’)

2-29

DIY3
• Transform this equation into NOR-NOR gates

– F(A,B,C,D) = (AB’(C’+BD’))+A’(BC+D(A’+B))

2-30

DIY 4
• Transform this equation into NAND-NAND

gates

– F(A,B,C,D) = (AB’(C’+BD’))+A’(BC+D(A’+B))

2-31

Introduction to Hazard and Glitch

• A hazard is a characteristic of a circuit.

• A glitch is an unwanted pulse that may occur

in a circuit with a hazard.

• A circuit with a hazard may or may not glitch.

As an analogy a wet floor at the supermarket • As an analogy a wet floor at the supermarket

is a hazard. It's not a problem unless someone

slips and falls which would be a glitch.

• The state of a circuit and the pattern of input

values determines if a circuit with a hazard will

cause glitch.
2-32

Types of Hazards

• A static hazard is when the output should remain static but experiences an

unwanted pulse.

• A dynamic hazard is when the output should go through a smooth

transition but changes more than once before settling at the new value.

2-33

Static 1 Hazard Static 0 Hazard Dynamic Hazard

Example 1

• F(A,B,C) = AB’ + BC

C = 1

B

A = 1

F

2-34

B

B’

BC

AB’ ’

F

Example 2

• F(A,B,C) = (A + B)(B’ + C)

A = 0
B

C = 0

F

2-35

B

B’

A + B

B’ + C

F

Example 3

• F = ABD+ABE+CD+CE

• 5 gates, 14 inputs

• It can be factored: simpler but has short and

long delay paths. Inequalities of delays

between paths will contribute to hazardsbetween paths will contribute to hazards

2-36

A

D

A

E

C

D

C

E

B

B

F

F

A
B
D
E

C

D
E

What’s Next
• You will look at the MSI design. How to use

standard devices to realise digital circuitry.

• Make sure you understand this chapter first.

2-37

