
SEE 3243
FSM Modelling & Systematic Realization II

Lecturers :
Muhammad Mun'im Ahmad Zabidi
Muhammad Nadzir Marsono

Week 10

�Vending Machine Example

�Finite String Pattern Recognizer

�Traffic Light Controller

�Digital Combination Lock

Muhammad Nadzir Marsono
Kamal Khalil

FINITE STATE MACHINE WORD PROBLEMS

Mapping English Language Description to Formal

Specifications

This Week we’ll cover applications of FSM as controller:

Two part design: Data Path + Controller

Four Case Studies:

Vending Machine

Finite String Pattern Recognizer

Traffic Light Controller

Digital Combination Lock

11-2

REVIEW OF DESIGN STEPS

Obtain specification of the desired circuit.

Create a state diagram from specification.

Create a state table from state diagram.

Perform state minimization.Perform state minimization.

Perform state assignment.

Derive the next-state logic expressions.

Implement circuit described by logic.

11-3

Example: Vending Machine FSM

Step 1. Understand the problem: Draw a picture!

� General Machine Concept:
� deliver package of gum after 15 cents deposited
� single coin slot for dimes, nickels
� no change

11-4

Block Diagram

Step 1. Understand the problem: Draw a picture!

Vending
Machine

FSM

N

D

Reset

Clk

Open
Coin

Sensor
Gum

Release
Mechanism

Vending Machine Example
Step 2. Map into more suitable abstract representation

Reset

N D

S0

S1 S2

1 5 10
25

Penny Nickel Dime Quarter

11-5

Draw state diagram:

Inputs: N, D, reset

Output: open

N

N

D N D

[open]

[open] [open] [open]

S3 S4 S5 S6

S8

[open]

S7

D

Tabulate typical input sequences
three nickels
nickel, dime
dime, nickel
two dimes
two nickels, dime

Vending Machine Controller

Present
State

Inputs Next
State

Output

D N OPEN

0¢ 0 0 0¢ 0
0 1 5¢ 0
1 0 10¢ 0
1 1 X 0

5¢ 0 0 5¢ 0

Step 3: State Minimization: reuse states whenever possible

Reset

D’N

0¢

5¢
DN’

D’N’

D’N’

5¢ 0 0 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 X 0

10¢ 0 0 10¢ 0
0 1 15¢ 0
1 0 15¢ 0
1 1 15¢ 0

15¢ X X 15¢ 1

11-6

D’N

N + D

[open]

15¢

10¢

DN’

Symbolic State Table

D’N’

We can assume X for Next State actually

Vending Machine Controller

Present State Inputs Next State Output

Q1 Q0 D N D1 D0 OPEN

0 0 0 0 0 0 0

0 1 0 1 0

1 0 1 0 0

1 1 X X 0

0 1 0 0 0 1 0

Step 4: State Encoding: “simple” binary easiest to understand

0 1 0 0 0 1 0

0 1 1 0 0

1 0 1 1 0

1 1 X X 0

1 0 0 0 1 0 0

0 1 1 1 0

1 0 1 1 0

1 1 1 1 0

1 1 X X 1 1 1

11-7Encoded State Table

Vending Machine Example
Step 5. Choose FFs for implementation: D FF easiest to use

Q1 Q0
D N

Q1

D

N

Q1 Q0
D N

Q1

D

N

Q1 Q0
D N

Q1

D

N

11-8

D1 = Q1 + D + Q0 • N

D0 = N•Q0’ + Q0•N’ + Q1•N + Q1•D

OPEN = Q1•Q0

8 Gates

CLK

OPEN

CLK

Q 0

D

R

Q

Q

D

R

Q

Q

\ Q 1

\reset

\reset

\ Q 0

\ Q 0

Q 0

Q 0

Q 1

Q 1

Q 1

Q 1

D

D

N

N

N

\ N

D 1

D 0

K-map for OpenK-map for D0 K-map for D1
Q0 Q0 Q0

Step 6. Implementation

Vending Machine Controller

Present
State

Inputs Next
State J 1 K1 J0 K0

Q1 Q0 D N Q+
1 Q+

0
0 0 0 0 0 0 0 X 0 X

0 1 0 1 0 X 1 X

Step 5. Choosing FF for Implementation: Use JKFF for kicks
� In FPGA/VLSI, DFF is most efficient.
� JKFF must be constructed using DFF plus a few gates.
� Run away from JKFF if possible!
� Different story when using discrete chips (BUT WHO DOES?)

Excitation Table

Q Q+ J K 0 1 0 1 0 X 1 X
1 0 1 0 1 X 0 X
1 1 X X X X X X

0 1 0 0 0 1 0 X X 0
0 1 1 0 1 X X 1
1 0 1 1 1 X X 0
1 1 X X X X X X

1 0 0 0 1 0 X 0 0 X
0 1 1 1 X 0 1 X
1 0 1 1 X 0 1 X
1 1 X X X X X X

1 1 X X 1 1 X 0 X 0

11-9

Remapped encoded state transition table

Q Q+ J K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0

Vending Machine Example
Step 6. Implementation

Q1 Q0
D N

Q1

D

N

Q1 Q0
D N

Q1

D

N

J1 = D + Q0 • N

K1 = 0

K0 = Q0’•N + Q1•D

K1 = Q1’•N

OPEN = Q1•Q0

11-10

K-map for K1K-map for J1
Q0 Q0

K-map for K0K-map for J0

Q1 Q0
D N

Q1

Q0

D

N

Q1 Q0
D N

Q1

Q0

D

N

OPEN = Q1•Q0

7 Gates

OPEN
Q 1

\ Q 0

N

Q 0 J

K R

Q

Q

J

K R

Q

Q

Q 0

\ Q 1

\ Q 1

\ Q 0

Q 1

\reset

D

D

N

N

CLK

CLK

Moore & Mealy State Diagram Equivalents
Back to Vending Machine Example

Reset/0

N/0

0¢

5¢
D/0

N D/0

N D/0

Moore
Machine

Reset

N

0¢

5¢
D

[0]

N D

N D

Mealy
Machine

11-11

Outputs are associated
with State

Outputs are associated
with Transitions

N/0

N+D/1

15¢

10¢

D/0

D/1
N D/0

N D/0

N

N+D

[1]

15¢

10¢

D

[0]

[0]

D
N D

N D

Finite String Pattern Recognizer
• A finite string recognizer has one input (X) and one

output (Z). The output is asserted whenever the
input sequence …010… has been observed, as long
as the sequence 100 has never been seen.

11-12

• Step 1. Understanding the problem statement

• Sample input/output behavior:

X: 00101010010…

Z: 00010101000…

X: 11011010010…

Z: 00000001000…

Finite String Pattern Recognizer
Step 2. Draw State Diagrams/ASM Charts for the strings that must be

recognized. i.e., 010 and 100.

Moore State Diagram
Reset signal places

FSM in S0

S0
[0]

S1
[0]

S4
[0]

Reset

11-13

Outputs 1 Loops in State

S2
[0]

S3
[1]

S5
[0]

S6
[0]

Finite String Pattern Recognizer
Exit conditions from state S3: have recognized …010

if next input is 0 then have …0100!
if next input is 1 then have …0101 = …01 (state S2)

S0
[0]

S1 S4

Reset

11-14

S1
[0]

S2
[0]

S3
[1]

S4
[0]

S5
[0]

S6
[0]

Finite String Pattern Recognizer
Exit conditions from S1: recognizes strings of form …0 (no 1 seen)

loop back to S1 if input is 0

Exit conditions from S4: recognizes strings of form …1 (no 0 seen)
loop back to S4 if input is 1

S0
[0]

Reset

11-15

S1
[0]

S2
[0]

S3
[1]

S4
[0]

S5
[0]

S6
[0]

Finite String Pattern Recognizer
S2, S5 with incomplete transitions

S2 = …01; If next input is 1, then string could be prefix of (01)1(00)
S4 handles just this case!

S5 = …10; If next input is 1, then string could be prefix of (10)1(0)
S2 handles just this case!

S0
[0]

Reset

11-16

Final State Diagram
S1
[0]

S2
[0]

S3
[1]

S4
[0]

S5
[0]

S6
[0]

Finite String Pattern Recognizer
• Review of Process:

– Write down sample inputs and outputs to understand

specification

– Write down sequences of states and transitions for the

sequences to be recognized

11-17

sequences to be recognized

– Add missing transitions; reuse states as much as

possible

– Verify I/O behavior of your state diagram to insure it

functions like the specification

Traffic Light Controller
• A busy highway is intersected by a little used farmroad. Detectors C

sense the presence of cars waiting on the farmroad. With no car on

farmroad, light remain green in highway direction. If vehicle on

farmroad, highway lights go from Green to Yellow to Red, allowing

the farmroad lights to become green. These stay green only as long

as a farmroad car is detected but never longer than a set interval.

11-18

• When these are met, farm lights transition from Green to Yellow to

Red, allowing highway to return to green. Even if farmroad vehicles

are waiting, highway gets at least a set interval as green.

• Assume you have an interval timer that generates a short time

pulse (TS) and a long time pulse (TL) in response to a set (ST) signal.

TS is to be used for timing yellow lights and TL for green lights.

Traffic Light Controller
Picture of Highway/Farmroad Intersection:

Highway

Farmroad

HL
FL

C

11-19

Highway

Highway

Farmroad

HL
FL

C

Traffic Light Controller
• Tabulation of Inputs and Outputs:

Input Signal
reset
C
TS
TL

Output Signal
HG, HY, HR

Description
place FSM in initial state
detect vehicle on farmroad
short time interval expired
long time interval expired

Description
assert green/yellow/red highway lights

11-20

HG, HY, HR
FG, FY, FR
ST

assert green/yellow/red highway lights
assert green/yellow/red farmroad lights
start timing a short or long interval

• Tabulation of Unique States: Some light configuration imply others

State
S0
S1
S2
S3

Description
Highway green (farmroad red)
Highway yellow (farmroad red)
Farmroad green (highway red)
Farmroad yellow (highway red)

Traffic Light Controller
State diagram:

S0: HG

S1: HY

S2: FG

S3: FY

Reset

TL + C

S0
TL•C/ST

TS

S1 S3

TS/ST

TS

11-21

S3: FY

S2

TS/ST
TL + C/ST

TS

TL • C

Door combination lock

• General specs:

– punch in 3 values in sequence and the door opens; if there is an

error the lock must be reset; once the door opens the lock must

be reset

• Inputs:

11-22

• Inputs:

– sequence of input values, reset

• Outputs:

– door open/close

• Memory:

– must remember combination or always have it available as an

input

Door combination lock: initial STD
• State diagram

– States: 5 states

• represent point in execution of machine

• each state has outputs

– Transitions: 6 from state to state, 5 self transitions, 1 global

• changes of state occur when clock says it’s ok

• based on value of inputs

11-23

based on value of inputs

– Inputs: reset, new, results of comparisons

– Output: open/closed

closed closedclosed
C1=value

& new

C2=value

& new

C3=value

& new

C1!=value

& new
C2!=value

& new

C3!=value

& new

closed

reset

not newnot newnot new

S1 S2 S3 OPEN

ERR

open

Door comb. lock : data-path vs. control

• Internal structure

– data-path
• storage for combination

• comparators

– control

11-24

– control
• finite-state machine controller

• control for data-path

• state changes controlled by clock
reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux
control

clock

Door combination lock: Final STD

• Finite-state machine

– refine state diagram to include internal structure

closed

ERR

11-25

closed
mux=C1

reset equal

& new

not equal

& new
not equal

& new
not equal

& new

not newnot newnot new

S1 S2 S3 OPEN

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

Door combination lock: STT
• Finite-state machine

– generate state table (much like a truth-table)
closed

closed
mux=C1

reset equal
& new

not equal

& new
not equal
& new

not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

11-26

reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
0 0 – S2 S2 C2 closed
0 1 0 S2 ERR – closed
0 1 1 S2 S3 C3 closed
0 0 – S3 S3 C3 closed
0 1 0 S3 ERR – closed
0 1 1 S3 OPEN – open
0 – – OPEN OPEN – open
0 – – ERR ERR – closed

next

not newnot newnot new

Door combination lock: encoding
• Encode state table

– state can be: S1, S2, S3, OPEN, or ERR

• needs at least 3 bits to encode: 000, 001, 010, 011, 100

• and as many as 5: 00001, 00010, 00100, 01000, 10000

• choose 4 bits: 0001, 0010, 0100, 1000, 0000

– output mux can be: C1, C2, or C3

• needs 2 to 3 bits to encode• needs 2 to 3 bits to encode

• choose 3 bits: 001, 010, 100

– output open/closed can be: open or closed

• needs 1 or 2 bits to encode

• choose 1 bits: 1, 0

11-27

Door combination lock: encoding
• Encode state table

– state can be: S1, S2, S3, OPEN, or ERR

• choose 4 bits: 0001, 0010, 0100, 1000, 0000

– output mux can be: C1, C2, or C3

• choose 3 bits: 001, 010, 100

– output open/closed can be: open or closed

• choose 1 bits: 1, 0• choose 1 bits: 1, 0

11-28

good choice of encoding!

mux is identical to
last 3 bits of state

open/closed is
identical to first bit
of state

reset new equal state state mux open/closed
1 – – – 0001 001 0
0 0 – 0001 0001 001 0
0 1 0 0001 0000 – 0
0 1 1 0001 0010 010 0
0 0 – 0010 0010 010 0
0 1 0 0010 0000 – 0
0 1 1 0010 0100 100 0
0 0 – 0100 0100 100 0
0 1 0 0100 0000 – 0
0 1 1 0100 1000 – 1
0 – – 1000 1000 – 1
0 – – 0000 0000 – 0

next

Door combination lock: controller

implementation
• Implementation of the controller

resetnew equal

controller
mux
control

special circuit element,
called a register, for
remembering inputs
when told to by clock

11-29

open/closed

controllercontrol
clock

reset

open/closed

new equal

mux
control

clock

comb. logic

state

Design hierarchy

system

data-path control

11-30

state
registers

combinational
logic

multiplexer comparator
code

registers

register logic

switching
networks

Chapter Review

• Word Problems

– understand I/O behavior; draw diagrams

– enumerate states for the "goal"; expand with error

conditions

11-31

conditions

– reuse states whenever possible
• First Two Steps of the Six Step Procedure for FSM Design

– understanding the problem

– abstract representation of the FSM

